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MEMORY CHANNEL THAT SUPPORTS
NEAR MEMORY AND FAR MEMORY
ACCESS

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/054421, filed Sep. 30, 2011, entitled
MEMORY CHANNEL THAT SUPPORTS NEAR
MEMORY AND FAR MEMORY ACCESS.

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
systems. More particularly, the invention relates to an appa-
ratus and method for implementing a multi-level memory
hierarchy including a non-volatile memory tier.

2. Description of the Related Art

A. Current Memory and Storage Configurations

One of the limiting factors for computer innovation today
is memory and storage technology. In conventional computer
systems, system memory (also known as main memory, pri-
mary memory, executable memory) is typically implemented
by dynamic random access memory (DRAM). DRAM-based
memory consumes power even when no memory reads or
writes occur because it must constantly recharge internal
capacitors. DRAM-based memory is volatile, which means
data stored in DRAM memory is lost once the power is
removed. Conventional computer systems also rely on mul-
tiple levels of caching to improve performance. A cache is a
high speed memory positioned between the processor and
system memory to service memory access requests faster
than they could be serviced from system memory. Such
caches are typically implemented with static random access
memory (SRAM). Cache management protocols may be used
to ensure that the most frequently accessed data and instruc-
tions are stored within one of the levels of cache, thereby
reducing the number of memory access transactions and
improving performance.

With respect to mass storage (also known as secondary
storage or disk storage), conventional mass storage devices
typically include magnetic media (e.g., hard disk drives),
optical media (e.g., compact disc (CD) drive, digital versatile
disc (DVD), etc.), holographic media, and/or mass-storage
flash memory (e.g., solid state drives (SSDs), removable flash
drives, etc.). Generally, these storage devices are considered
Input/Output (I/O) devices because they are accessed by the
processor through various I/O adapters that implement vari-
ous I/O protocols. These I/O adapters and 1/O protocols con-
sume a significant amount of power and can have a significant
impact on the die area and the form factor of the platform.
Portable or mobile devices (e.g., laptops, netbooks, tablet
computers, personal digital assistant (PDAs), portable media
players, portable gaming devices, digital cameras, mobile
phones, smartphones, feature phones, etc.) that have limited
battery life when not connected to a permanent power supply
may include removable mass storage devices (e.g., Embed-
ded Multimedia Card (eMMC), Secure Digital (SD) card)
that are typically coupled to the processor via low-power
interconnects and 1/O controllers in order to meet active and
idle power budgets.

With respect to firmware memory (such as boot memory
(also known as BIOS flash)), a conventional computer system
typically uses flash memory devices to store persistent system
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information that is read often but seldom (or never) written to.
For example, the initial instructions executed by a processor
to initialize key system components during a boot process
(Basic Input and Output System (BIOS) images) are typically
stored in a flash memory device. Flash memory devices that
are currently available in the market generally have limited
speed (e.g., 50 MHz). This speed is further reduced by the
overhead for read protocols (e.g., 2.5 MHz). In order to speed
up the BIOS execution speed, conventional processors gen-
erally cache a portion of BIOS code during the Pre-Extensible
Firmware Interface (PEI) phase of the boot process. The size
of the processor cache places a restriction on the size of the
BIOS code used in the PEI phase (also known as the “PEI
BIOS code”).

B. Phase-Change Memory (PCM) and Related Technolo-
gies

Phase-change memory (PCM), also sometimes referred to
as phase change random access memory (PRAM or
PCRAM), PCME, Ovonic Unified Memory, or Chalcogenide
RAM (C-RAM), is a type of non-volatile computer memory
which exploits the unique behavior of chalcogenide glass. As
aresult of heat produced by the passage of an electric current,
chalcogenide glass can be switched between two states: crys-
talline and amorphous. Recent versions of PCM can achieve
two additional distinct states.

PCM provides higher performance than flash because the
memory element of PCM can be switched more quickly,
writing (changing individual bits to either 1 or 0) can be done
without the need to first erase an entire block of cells, and
degradation from writes is slower (a PCM device may survive
approximately 100 million write cycles; PCM degradation is
due to thermal expansion during programming, metal (and
other material) migration, and other mechanisms).

BRIEF DESCRIPTION OF THE DRAWINGS

The following description and accompanying drawings are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 illustrates a cache and system memory arrangement
according to one embodiment of the invention;

FIG. 2 illustrates a memory and storage hierarchy
employed in one embodiment of the invention;

FIG. 3 illustrates a computer system on which embodi-
ments of the invention may be implemented;

FIG. 4 illustrates an implementation of near memory cache
and far memory on a same memory channel;

FIG. 5 illustrates a write process that can be performed on
the near memory/far memory system observed in FIG. 4;

FIG. 6 illustrates a read process that can be performed on
the near memory/far memory system observed in FIG. 4;

FIG. 7A illustrates a “near memory in front of” architecture
for integrating near memory cache and far memory on a same
memory channel;

FIGS. 7B-D illustrate processes that can be performed by
the system of FIG. 7A;

FIG. 8A illustrates a “near memory in front of” architecture
for integrating near memory cache and far memory on a same
memory channel;

FIGS. 8B-D illustrate processes that can be performed by
the system of FIG. 8A;

FIG. 9A illustrates application of memory channel wiring
to support near memory accesses,

FIG. 9B illustrates application of memory channel wiring
to support far memory accesses;

FIG. 10 illustrates a process for accessing near memory;
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FIG. 11 illustrates an embodiment of far memory control
logic circuitry;

FIGS.12A-Biillustrate atomic processes that may transpire
of'amemory channel that supports near memory accesses and
far memory accesses.

DETAILED DESCRIPTION

In the following description, numerous specific details
such as logic implementations, opcodes, means to specity
operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
present invention. It will be appreciated, however, by one
skilled in the art that the invention may be practiced without
such specific details. In other instances, control structures,
gate level circuits and full software instruction sequences
have not been shown in detail in order not to obscure the
invention. Those of ordinary skill in the art, with the included
descriptions, will be able to implement appropriate function-
ality without undue experimentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not be
in direct physical or electrical contact with each other, co-
operate or interact with each other. “Connected” is used to
indicate the establishment of communication between two or
more elements that are coupled with each other.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, dots) are sometimes used
herein to illustrate optional operations/components that add
additional features to embodiments of the invention. How-
ever, such notation should not be taken to mean that these are
the only options or optional operations/components, and/or
that blocks with solid borders are not optional in certain
embodiments of the invention.

Introduction

Memory capacity and performance requirements continue
to increase with an increasing number of processor cores and
new usage models such as virtualization. In addition, memory
power and cost have become a significant component of the
overall power and cost, respectively, of electronic systems.

Some embodiments of the invention solve the above chal-
lenges by intelligently subdividing the performance require-
ment and the capacity requirement between memory tech-
nologies. The focus of this approach is on providing
performance with a relatively small amount of a relatively
higher-speed memory such as DRAM while implementing
the bulk of the system memory using significantly cheaper
and denser non-volatile random access memory (NVRAM).
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Embodiments of the invention described below define plat-
form configurations that enable hierarchical memory sub-
system organizations for the use of NVRAM. The use of
NVRAM in the memory hierarchy also enables new usages
such as expanded boot space and mass storage implementa-
tions, as described in detail below.

FIG. 1 illustrates a cache and system memory arrangement
according to embodiments of the invention. Specifically, FIG.
1 shows a memory hierarchy including a set of internal pro-
cessor caches 120, “near memory” acting as a far memory
cache 121, which may include both internal cache(s) 106 and
external caches 107-109, and “far memory” 122. One particu-
lar type of memory which may be used for “far memory” in
some embodiments of the invention is non-volatile random
access memory (“NVRAM”). As such, an overview of
NVRAM is provided below, followed by an overview of far
memory and near memory.

A. Non-Volatile Random Access Memory (“NVRAM”)

There are many possible technology choices for NVRAM,
including PCM, Phase Change Memory and Switch (PCMS)
(the latter being a more specific implementation of the
former), byte-addressable persistent memory (BPRAM),
storage class memory (SCM), universal memory,
Ge2Sb2TeS, programmable metallization cell (PMC), resis-
tive memory (RRAM), RESET (amorphous) cell, SET (crys-
talline) cell, PCME, Ovshinsky memory, ferroelectric
memory (also known as polymer memory and poly(N-vinyl-
carbazole)), ferromagnetic memory (also known as Spintron-
ics, SPRAM (spin-transfer torque RAM), STRAM (spin tun-
neling RAM), magnetoresistive memory, magnetic memory,
magnetic random access memory (MRAM)), and Semicon-
ductor-oxide-nitride-oxide-semiconductor (SONOS, also
known as dielectric memory).

NVRAM has the following characteristics:

(1) It maintains its content even if power is removed, simi-
lar to FLASH memory used in solid state disks (SSD), and
different from SRAM and DRAM which are volatile;

(2) lower power consumption than volatile memories such
as SRAM and DRAM;

(3) random access similar to SRAM and DRAM (also
known as randomly addressable);

(4) rewritable and erasable at a lower level of granularity
(e.g., bytelevel) than FLLASH found in SSDs (which can only
be rewritten and erased a “block” at a time—minimally 64
Kbyte in size for NOR FLASH and 16 Kbyte for NAND
FLASH);

(5) used as a system memory and allocated all or a portion
of the system memory address space;

(6) capable of being coupled to the processor over a bus
using a transactional protocol (a protocol that supports trans-
action identifiers (IDs) to distinguish different transactions so
that those transactions can complete out-of-order) and allow-
ing access at a level of granularity small enough to support
operation of the NVRAM as system memory (e.g., cache line
size such as 64 or 128 byte). For example, the bus may be a
memory bus (e.g., a DDR bus such as DDR3, DDRA4, etc.)
over which is run a transactional protocol as opposed to the
non-transactional protocol that is normally used. As another
example, the bus may one over which is normally run a
transactional protocol (a native transactional protocol), such
as a PCI express (PCIE) bus, desktop management interface
(DMI) bus, or any other type of bus utilizing a transactional
protocol and a small enough transaction payload size (e.g.,
cache line size such as 64 or 128 byte); and
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(7) one or more of the following:

a) faster write speed than non-volatile memory/storage
technologies such as FLASH;

b) very high read speed (faster than FLASH and near or
equivalent to DRAM read speeds);

¢) directly writable (rather than requiring erasing (over-
writing with 1s) before writing data like FLASH
memory used in SSDs);

d) a greater number of writes before failure (more than boot
ROM and FLLASH used in SSDs); and/or

As mentioned above, in contrastto FLASH memory, which
must be rewritten and erased a complete “block” at a time, the
level of granularity at which NVRAM is accessed in any
given implementation may depend on the particular memory
controller and the particular memory bus or other type of bus
to which the NVRAM is coupled. For example, in some
implementations where NVRAM is used as system memory,
the NVRAM may be accessed at the granularity of a cache
line (e.g., a 64-byte or 128-Byte cache line), notwithstanding
an inherent ability to be accessed at the granularity of a byte,
because cache line is the level at which the memory sub-
system accesses memory. Thus, when NVRAM is deployed
within a memory subsystem, it may be accessed at the same
level of granularity as the DRAM (e.g., the “near memory™)
used in the same memory subsystem. Even so, the level of
granularity of access to the NVRAM by the memory control-
ler and memory bus or other type of bus is smaller than that of
the block size used by Flash and the access size of the I/O
subsystem’s controller and bus.

NVRAM may also incorporate wear leveling algorithms to
account for the fact that the storage cells at the far memory
level begin to wear out after a number of write accesses,
especially where a significant number of writes may occur
such as in a system memory implementation. Since high cycle
count blocks are most likely to wear out in this manner, wear
leveling spreads writes across the far memory cells by swap-
ping addresses of high cycle count blocks with low cycle
count blocks. Note that most address swapping is typically
transparent to application programs because it is handled by
hardware, lower-level software (e.g., a low level driver or
operating system), or a combination of the two.

B. Far Memory

The far memory 122 of some embodiments of the invention
is implemented with NVRAM, but is not necessarily limited
to any particular memory technology. Far memory 122 is
distinguishable from other instruction and data memory/stor-
age technologies in terms of its characteristics and/or its
application in the memory/storage hierarchy. For example,
far memory 122 is different from:

1) static random access memory (SRAM) which may be
used for level 0 and level 1 internal processor caches
101a-b, 102a-b, 103a-b, 103a-b, and 104a-b dedicated
to each of the processor cores 101-104, respectively, and
lower level cache (LLLC) 105 shared by the processor
cores;

2) dynamic random access memory (DRAM) configured
as a cache 106 internal to the processor 100 (e.g., on the
same die as the processor 100) and/or configured as one
or more caches 107-109 external to the processor (e.g.,
in the same or a different package from the processor
100); and

3) FLASH memory/magnetic disk/optical disc applied as
mass storage (not shown); and

4) memory such as FLASH memory or other read only
memory (ROM) applied as firmware memory (which
can refer to boot ROM, BIOS Flash, and/or TPM Flash).
(not shown).
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Far memory 122 may be used as instruction and data stor-
age that is directly addressable by a processor 100 and is able
to sufficiently keep pace with the processor 100 in contrast to
FLASH/magnetic disk/optical disc applied as mass storage.
Moreover, as discussed above and described in detail below,
far memory 122 may be placed on a memory bus and may
communicate directly with a memory controller that, in turn,
communicates directly with the processor 100.

Far memory 122 may be combined with other instruction
and data storage technologies (e.g., DRAM) to form hybrid
memories (also known as Co-locating PCM and DRAM,; first
level memory and second level memory; FLLAM (FLASH and
DRAM)). Note that at least some of the above technologies,
including PCM/PCMS may be used for mass storage instead
of, or in addition to, system memory, and need not be random
accessible, byte addressable or directly addressable by the
processor when applied in this manner.

For convenience of explanation, most of the remainder of
the application will refer to “NVRAM” or, more specifically,
“PCM,” or “PCMS” as the technology selection for the far
memory 122. As such, the terms NVRAM, PCM, PCMS, and
far memory may be used interchangeably in the following
discussion. However it should be realized, as discussed
above, that different technologies may also be utilized for far
memory. Also, that NVRAM is not limited for use as far
memory.

C. Near Memory

“Near memory” 121 is an intermediate level of memory
configured in front of a far memory 122 that has lower read/
write access latency relative to far memory and/or more sym-
metric read/write access latency (i.e., having read times
which are roughly equivalent to write times). In some
embodiments, the near memory 121 has significantly lower
write latency than the far memory 122 but similar (e.g.,
slightly lower or equal) read latency; for instance the near
memory 121 may be a volatile memory such as volatile ran-
dom access memory (VRAM) and may comprise a DRAM or
other high speed capacitor-based memory. Note, however,
that the underlying principles of the invention are not limited
to these specific memory types. Additionally, the near
memory 121 may have a relatively lower density and/or may
be more expensive to manufacture than the far memory 122.

In one embodiment, near memory 121 is configured
between the far memory 122 and the internal processor
caches 120. In some of the embodiments described below,
near memory 121 is configured as one or more memory-side
caches (MSCs) 107-109 to mask the performance and/or
usage limitations of the far memory including, for example,
read/write latency limitations and memory degradation limi-
tations. In these implementations, the combination of the
MSC 107-109 and far memory 122 operates at a performance
level which approximates, is equivalent or exceeds a system
which uses only DRAM as system memory. As discussed in
detail below, although shown as a “cache” in FIG. 1, the near
memory 121 may include modes in which it performs other
roles, either in addition to, or in lieu of, performing the role of
a cache.

Near memory 121 can be located on the processor die (as
cache(s) 106) and/or located external to the processor die (as
caches 107-109) (e.g., on a separate die located on the CPU
package, located outside the CPU package with a high band-
width link to the CPU package, for example, on a memory
dual in-line memory module (DIMM), a riser/mezzanine, or
a computer motherboard). The near memory 121 may be
coupled in communicate with the processor 100 using a
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single or multiple high bandwidth links, such as DDR or other
transactional high bandwidth links (as described in detail
below).

An Exemplary System Memory Allocation Scheme

FIG. 1 illustrates how various levels of caches 101-109 are
configured with respect to a system physical address (SPA)
space 116-119 in embodiments of the invention. As men-
tioned, this embodiment comprises a processor 100 having
one or more cores 101-104, with each core having its own
dedicated upper level cache (LO) 101a-104a and mid-level
cache (MLC) (LL1) cache 1015-1045. The processor 100 also
includes a shared LLC 105. The operation of these various
cache levels are well understood and will not be described in
detail here.

The caches 107-109 illustrated in FIG. 1 may be dedicated
to a particular system memory address range or a set of
non-contiguous address ranges. For example, cache 107 is
dedicated to acting as an MSC for system memory address
range #1 116 and caches 108 and 109 are dedicated to acting
as MSCs for non-overlapping portions of system memory
address ranges #2 117 and #3 118. The latter implementation
may be used for systems in which the SPA space used by the
processor 100 is interleaved into an address space used by the
caches 107-109 (e.g., when configured as MSCs). In some
embodiments, this latter address space is referred to as a
memory channel address (MCA) space. In one embodiment,
the internal caches 101a-106 perform caching operations for
the entire SPA space.

System memory as used herein is memory which is visible
to and/or directly addressable by software executed on the
processor 100; while the cache memories 101a-109 may
operate transparently to the software in the sense that they do
not form a directly-addressable portion of the system address
space, but the cores may also support execution of instruc-
tions to allow software to provide some control (configura-
tion, policies, hints, etc.) to some or all of the cache(s). The
subdivision of system memory into regions 116-119 may be
performed manually as part of a system configuration process
(e.g., by a system designer) and/or may be performed auto-
matically by software.

In one embodiment, the system memory regions 116-119
are implemented using far memory (e.g., PCM) and, in some
embodiments, near memory configured as system memory.
System memory address range #4 represents an address range
which is implemented using a higher speed memory such as
DRAM which may be a near memory configured in a system
memory mode (as opposed to a caching mode).

FIG. 2 illustrates a memory/storage hierarchy 140 and
different configurable modes of operation for near memory
144 and NVRAM according to embodiments of the invention.
The memory/storage hierarchy 140 has multiple levels
including (1) a cache level 150 which may include processor
caches 150A (e.g., caches 101A-105in FIG. 1) and optionally
near memory as cache for far memory 150B (in certain modes
of operation as described herein), (2) a system memory level
151 which may include far memory 151B (e.g., NVRAM
such as PCM) when near memory is present (or just NVRAM
as system memory 174 when near memory is not present),
and optionally near memory operating as system memory
151A (in certain modes of operation as described herein), (3)
amass storage level 152 which may include a flash/magnetic/
optical mass storage 152B and/or NVRAM mass storage
152A (e.g., aportion of the NVRAM 142); and (4) a firmware
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8
memory level 153 that may include BIOS flash 170 and/or
BIOS NVRAM 172 and optionally trusted platform module
(TPM) NVRAM 173.

As indicated, near memory 144 may be implemented to
operate in a variety of different modes including: a first mode
in which it operates as a cache for far memory (near memory
as cache for FM 150B); a second mode in which it operates as
system memory 151A and occupies a portion of the SPA
space (sometimes referred to as near memory “direct access”
mode); and one or more additional modes of operation such as
a scratchpad memory 192 or as a write buffer 193. In some
embodiments of the invention, the near memory is partition-
able, where each partition may concurrently operate in a
different one of the supported modes; and different embodi-
ments may support configuration of the partitions (e.g., sizes,
modes) by hardware (e.g., fuses, pins), firmware, and/or soft-
ware (e.g., through a set of programmable range registers
within the MSC controller 124 within which, for example,
may be stored different binary codes to identify each mode
and partition).

System address space A 190 in FIG. 2 is used to illustrate
operation when near memory is configured as a MSC for far
memory 150B. In this configuration, system address space A
190 represents the entire system address space (and system
address space B 191 does not exist). Alternatively, system
address space B 191 is used to show an implementation when
all or a portion of near memory is assigned a portion of the
system address space. In this embodiment, system address
space B 191 represents the range of the system address space
assigned to the near memory 151 A and system address space
A 190 represents the range of the system address space
assigned to NVRAM 174.

In addition, when acting as a cache for far memory 150B,
the near memory 144 may operate in various sub-modes
under the control of the MSC controller 124. In each of these
modes, the near memory address space (NMA) is transparent
to software in the sense that the near memory does not form a
directly-addressable portion of the system address space.
These modes include but are not limited to the following:

(1) Write-Back Caching Mode: In this mode, all or portions
of the near memory acting as a FM cache 150B is used as a
cache for the NVRAM far memory (FM) 151B. While in
write-back mode, every write operation is directed initially to
the near memory as cache for FM 150B (assuming that the
cache line to which the write is directed is present in the
cache). A corresponding write operation is performed to
update the NVRAM FM 151B only when the cache line
within the near memory as cache for FM 150B is to be
replaced by another cache line (in contrast to write-through
mode described below in which each write operation is imme-
diately propagated to the NVRAM FM 151B).

(2) Near Memory Bypass Mode: In this mode all reads and
writes bypass the NM acting as a FM cache 150B and go
directly to the NVRAM FM 151B. Such a mode may be used,
for example, when an application is not cache friendly or
requires data to be committed to persistence at the granularity
of'a cache line. In one embodiment, the caching performed by
the processor caches 150 A and the NM acting as a FM cache
150B operate independently of one another. Consequently,
data may be cached in the NM acting as a FM cache 150B
which is not cached in the processor caches 150A (and which,
in some cases, may not be permitted to be cached in the
processor caches 150A) and vice versa. Thus, certain data
which may be designated as “uncacheable” in the processor
caches may be cached within the NM acting as a FM cache
150B.
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(3) Near Memory Read-Cache Write Bypass Mode: This is
a variation of the above mode where read caching of the
persistent data from NVRAM FM 151B is allowed (i.e., the
persistent data is cached in the near memory as cache for far
memory 150B for read-only operations). This is useful when
most of the persistent data is “Read-Only” and the application
usage is cache-friendly.

(4) Near Memory Read-Cache Write-Through Mode: This
is a variation of the near memory read-cache write bypass
mode, where in addition to read caching, write-hits are also
cached. Every write to the near memory as cache for FM
1508 causes a write to the FM 151B. Thus, due to the write-
through nature of the cache, cache-line persistence is still
guaranteed.

When acting in near memory direct access mode, all or
portions of the near memory as system memory 151A are
directly visible to software and form part of the SPA space.
Such memory may be completely under software control.
Such a scheme may create a non-uniform memory address
(NUMA) memory domain for software where it gets higher
performance from near memory 144 relative to NVRAM
system memory 174. By way of example, and not limitation,
such a usage may be employed for certain high performance
computing (HPC) and graphics applications which require
very fast access to certain data structures.

In an alternate embodiment, the near memory direct access
mode is implemented by “pinning” certain cache lines in near
memory (i.e., cache lines which have data that is also concur-
rently stored in NVRAM 142). Such pinning may be done
effectively in larger, multi-way, set-associative caches.

FIG. 2 also illustrates that a portion of the NVRAM 142
may be used as firmware memory. For example, the BIOS
NVRAM 172 portion may be used to store BIOS images
(instead of or in addition to storing the BIOS information in
BIOS flash 170). The BIOS NVRAM portion 172 may be a
portion of the SPA space and is directly addressable by soft-
ware executed on the processor cores 101-104, whereas the
BIOS flash 170 is addressable through the I/O subsystem 115.
As another example, a trusted platform module (TPM)
NVRAM 173 portion may be used to protect sensitive system
information (e.g., encryption keys).

Thus, as indicated, the NVRAM 142 may be implemented
to operate in a variety of different modes, including as far
memory 151B (e.g., when near memory 144 is present/oper-
ating, whether the near memory is acting as a cache for the
FM via a MSC control 124 or not (accessed directly after
cache(s) 101A-105 and without MSC control 124)); just
NVRAM system memory 174 (not as far memory because
there is no near memory present/operating; and accessed
without MSC control 124); NVRAM mass storage 152A;
BIOSNVRAM 172; and TPM NVRAM 173. While different
embodiments may specify the NVRAM modes in different
ways, FIG. 3 describes the use of a decode table 333.

FIG. 3 illustrates an exemplary computer system 300 on
which embodiments of the invention may be implemented.
The computer system 300 includes a processor 310 and
memory/storage subsystem 380 with a NVRAM 142 used for
both system memory, mass storage, and optionally firmware
memory. In one embodiment, the NVRAM 142 comprises the
entire system memory and storage hierarchy used by com-
puter system 300 for storing data, instructions, states, and
other persistent and non-persistent information. As previ-
ously discussed, NVRAM 142 can be configured to imple-
ment the roles in a typical memory and storage hierarchy of
system memory, mass storage, and firmware memory, TPM
memory, and the like. In the embodiment of FIG. 3, NVRAM
142 is partitioned into FM 151B, NVRAM mass storage
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152A, BIOS NVRAM 173, and TMP NVRAM 173. Storage
hierarchies with different roles are also contemplated and the
application of NVRAM 142 is not limited to the roles
described above.

By way of example, operation while the near memory as
cache for FM 150B is in the write-back caching is described.
In one embodiment, while the near memory as cache for FM
1508 is in the write-back caching mode mentioned above, a
read operation will first arrive at the MSC controller 124
which will perform a look-up to determine if the requested
data is present in the near memory acting as a cache for FM
1508 (e.g., utilizing a tag cache 342). If present, it will return
the data to the requesting CPU, core 101-104 or 1/O device
through I/O subsystem 115. Ifthe data is not present, the MSC
controller 124 will send the request along with the system
memory address to an NVRAM controller 332. The NVRAM
controller 332 will use the decode table 333 to translate the
system memory address to an NVRAM physical device
address (PDA) and direct the read operation to this region of
the far memory 151B. In one embodiment, the decode table
333 includes an address indirection table (AIT) component
which the NVRAM controller 332 uses to translate between
system memory addresses and NVRAM PDAs. In one
embodiment, the AIT is updated as part of the wear leveling
algorithm implemented to distribute memory access opera-
tions and thereby reduce wear on the NVRAM FM 151B.
Alternatively, the AIT may be a separate table stored within
the NVRAM controller 332.

Upon receiving the requested data from the NVRAM FM
151B, the NVRAM controller 332 will return the requested
data to the MSC controller 124 which will store the data in the
MSC near memory acting as an FM cache 150B and also send
the data to the requesting processor core 101-104, or I/O
Device through I/O subsystem 115. Subsequent requests for
this data may be serviced directly from the near memory
acting as a FM cache 150B until it is replaced by some other
NVRAM FM data.

As mentioned, in one embodiment, a memory write opera-
tion also first goes to the MSC controller 124 which writes it
into the MSC near memory acting as a FM cache 150B. In
write-back caching mode, the data may not be sent directly to
the NVRAM FM 151B when a write operation is received.
For example, the data may be sent to the NVRAM FM 151B
only when the location in the MSC near memory acting as a
FM cache 150B in which the data is stored must be re-used for
storing data for a different system memory address. When this
happens, the MSC controller 124 notices that the data is not
current in NVRAM FM 151B and will thus retrieve it from
near memory acting as a FM cache 150B and send it to the
NVRAM controller 332. The NVRAM controller 332 looks
up the PDA for the system memory address and then writes
the data to the NVRAM FM 151B.

In FIG. 3, the NVRAM controller 332 is shown connected
to the FM 151B, NVRAM mass storage 152A, and BIOS
NVRAM 172 using three separate lines. This does not nec-
essarily mean, however, that there are three separate physical
buses or communication channels connecting the NVRAM
controller 332 to these portions of the NVRAM 142. Rather,
in some embodiments, a common memory bus or other type
of bus (such as those described below with respect to FIGS.
4A-M) is used to communicatively couple the NVRAM con-
troller 332 to the FM 151B, NVRAM mass storage 152A, and
BIOS NVRAM 172. For example, in one embodiment, the
three lines in FIG. 3 represent a bus, such as a memory bus
(e.g., a DDR3, DDRA4, etc, bus), over which the NVRAM
controller 332 implements a transactional protocol to com-
municate withthe NVRAM 142. The NVRAM controller 332
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may also communicate with the NVRAM 142 over a bus
supporting a native transactional protocol such as a PCI
express bus, desktop management interface (DMI) bus, or any
other type of bus utilizing a transactional protocol and a small
enough transaction payload size (e.g., cache line size such as
64 or 128 byte).

In one embodiment, computer system 300 includes inte-
grated memory controller (IMC) 331 which performs the
central memory access control for processor 310, which is
coupled to: 1) a memory-side cache (MSC) controller 124 to
control access to near memory (NM) acting as a far memory
cache 150B; and 2) a NVRAM controller 332 to control
access to NVRAM 142. Although illustrated as separate units
in FIG. 3, the MSC controller 124 and NVRAM controller
332 may logically form part of the IMC 331.

In the illustrated embodiment, the MSC controller 124
includes a set of range registers 336 which specify the mode
of operation in use for the NM acting as a far memory cache
150B (e.g., write-back caching mode, near memory bypass
mode, etc, described above). In the illustrated embodiment,
DRAM 144 is used as the memory technology for the NM
acting as cache for far memory 150B. In response to a
memory access request, the MSC controller 124 may deter-
mine (depending on the mode of operation specified in the
range registers 336) whether the request can be serviced from
the NM acting as cache for FM 150B or whether the request
must be sent to the NVRAM controller 332, which may then
service the request from the far memory (FM) portion 151B
of the NVRAM 142.

In an embodiment where NVRAM 142 is implemented
with PCMS, NVRAM controller 332 is a PCMS controller
that performs access with protocols consistent with the
PCMS technology. As previously discussed, the PCMS
memory is inherently capable of being accessed at the granu-
larity of a byte. Nonetheless, the NVR AM controller 332 may
access a PCMS-based far memory 151B at a lower level of
granularity such as a cache line (e.g., a 64-bit or 128-bit cache
line) or any other level of granularity consistent with the
memory subsystem. The underlying principles of the inven-
tion are not limited to any particular level of granularity for
accessing a PCMS-based far memory 151B. In general, how-
ever, when PCMS-based far memory 151B is used to form
part of the system address space, the level of granularity will
be higher than that traditionally used for other non-volatile
storage technologies such as FLASH, which can only per-
form rewrite and erase operations at the level of a “block”
(minimally 64 Kbyte in size for NOR FLLASH and 16 Kbyte
for NAND FLASH).

In the illustrated embodiment, NVRAM controller 332 can
read configuration data to establish the previously described
modes, sizes, etc. for the NVRAM 142 from decode table
333, or alternatively, can rely on the decoding results passed
from IMC 331 and 1/O subsystem 315. For example, at either
manufacturing time or in the field, computer system 300 can
program decode table 333 to mark different regions of
NVRAM 142 as system memory, mass storage exposed via
SATA interfaces, mass storage exposed via USB Bulk Only
Transport (BOT) interfaces, encrypted storage that supports
TPM storage, among others. The means by which access is
steered to different partitions of NVRAM device 142 is viaa
decode logic. For example, in one embodiment, the address
range of each partition is defined in the decode table 333. In
one embodiment, when IMC 331 receives an access request,
the target address of the request is decoded to reveal whether
the request is directed toward memory, NVRAM mass stor-
age, or I/O. If it is a memory request, IMC 331 and/or the
MSC controller 124 further determines from the target
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address whether the request is directed to NM as cache for FM
150B or to FM 151B. For FM 151B access, the request is
forwarded to NVRAM controller 332. IMC 331 passes the
request to the I/O subsystem 115 if this request is directed to
1/0 (e.g., non-storage and storage 1/O devices). [/O subsystem
115 further decodes the address to determine whether the
address points to NVRAM mass storage 152A, BIOS
NVRAM 172, or other non-storage or storage /O devices. If
this address points to NVRAM mass storage 152A or BIOS
NVRAM 172, /O subsystem 115 forwards the request to
NVRAM controller 332. If this address points to TMP
NVRAM 173, /O subsystem 115 passes the request to TPM
334 to perform secured access.

In one embodiment, each request forwarded to NVRAM
controller 332 is accompanied with an attribute (also known
as a “transaction type”) to indicate the type of access. In one
embodiment, NVRAM controller 332 may emulate the
access protocol for the requested access type, such that the
rest of the platform remains unaware of the multiple roles
performed by NVRAM 142 in the memory and storage hier-
archy. In alternative embodiments, NVRAM controller 332
may perform memory access to NVRAM 142 regardless of
which transaction type it is. It is understood that the decode
path can be different from what is described above. For
example, IMC 331 may decode the target address of an access
request and determine whether it is directed to NVRAM 142.
If it is directed to NVRAM 142, IMC 331 generates an
attribute according to decode table 333. Based on the
attribute, IMC 331 then forwards the request to appropriate
downstream logic (e.g., NVRAM controller 332 and 1/O sub-
system 315) to perform the requested data access. In yet
another embodiment, NVRAM controller 332 may decode
the target address if the corresponding attribute is not passed
on from the upstream logic (e.g., IMC 331 and I/O subsystem
315). Other decode paths may also be implemented.

The presence of a new memory architecture such as
described herein provides for a wealth of new possibilities.
Although discussed at much greater length further below,
some of these possibilities are quickly highlighted immedi-
ately below.

According to one possible implementation, NVRAM 142
acts as a total replacement or supplement for traditional
DRAM technology in system memory. In one embodiment,
NVRAM 142 represents the introduction of a second-level
system memory (e.g., the system memory may be viewed as
having a first level system memory comprising near memory
as cache 150B (part of the DRAM device 340) and a second
level system memory comprising far memory (FM) 151B
(part of the NVRAM 142).

According to some embodiments, NVRAM 142 acts as a
total replacement or supplement for the flash/magnetic/opti-
cal mass storage 152B. As previously described, in some
embodiments, even though the NVRAM 152A is capable of
byte-level addressability, NVRAM controller 332 may still
access NVRAM mass storage 152A in blocks of multiple
bytes, depending on the implementation (e.g., 64 Kbytes, 128
Kbytes, etc.). The specific manner in which data is accessed
from NVRAM mass storage 152A by NVRAM controller
332 may be transparent to software executed by the processor
310. For example, even through NVRAM mass storage 152A
may be accessed differently from Flash/magnetic/optical
mass storage 152A, the operating system may still view
NVRAM mass storage 152A as a standard mass storage
device (e.g., a serial ATA hard drive or other standard form of
mass storage device).

In an embodiment where NVRAM mass storage 152A acts
as a total replacement for the flash/magnetic/optical mass
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storage 152B, it is not necessary to use storage drivers for
block-addressable storage access. The removal of storage
driver overhead from storage access can increase access
speed and save power. In alternative embodiments where it is
desired that NVRAM mass storage 152A appears to the OS
and/or applications as block-accessible and indistinguishable
from flash/magnetic/optical mass storage 152B, emulated
storage drivers can be used to expose block-accessible inter-
faces (e.g., Universal Serial Bus (USB) Bulk-Only Transfer
(BOT), 1.0; Serial Advanced Technology Attachment
(SATA), 3.0; and the like) to the software for accessing
NVRAM mass storage 152A.

In one embodiment, NVRAM 142 acts as a total replace-
ment or supplement for firmware memory such as BIOS flash
362 and TPM flash 372 (illustrated with dotted lines in FIG.
3 to indicate that they are optional). For example, the
NVRAM 142 may include a BIOS NVRAM 172 portion to
supplement or replace the BIOS flash 362 and may include a
TPM NVRAM 173 portion to supplement or replace the TPM
flash 372. Firmware memory can also store system persistent
states used by a TPM 334 to protect sensitive system infor-
mation (e.g., encryption keys). In one embodiment, the use of
NVRAM 142 for firmware memory removes the need for
third party flash parts to store code and data that are critical to
the system operations.

Continuing then with a discussion of the system of FIG. 3,
in some embodiments, the architecture of computer system
100 may include multiple processors, although a single pro-
cessor 310 is illustrated in FIG. 3 for simplicity. Processor
310 may be any type of data processor including a general
purpose or special purpose central processing unit (CPU), an
application-specific integrated circuit (ASIC) or a digital sig-
nal processor (DSP). For example, processor 310 may be a
general-purpose processor, such as a Core™ 13, 15,17, 2 Duo
and Quad, Xeon™, or Itanium™ processor, all of which are
available from Intel Corporation, of Santa Clara, Calif. Alter-
natively, processor 310 may be from another company, such
as ARM Holdings, Ltd, of Sunnyvale, Calif., MIPS Technolo-
gies of Sunnyvale, Calif., etc. Processor 310 may be a special-
purpose processor, such as, for example, a network or com-
munication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
Processor 310 may be implemented on one or more chips
included within one or more packages. Processor 310 may be
a part of and/or may be implemented on one or more sub-
strates using any of a number of process technologies, such
as, for example, BiICMOS, CMOS, or NMOS. In the embodi-
ment shown in FIG. 3, processor 310 has a system-on-a-chip
(SOC) configuration.

In one embodiment, the processor 310 includes an inte-
grated graphics unit 311 which includes logic for executing
graphics commands such as 3D or 2D graphics commands.
While the embodiments of the invention are not limited to any
particular integrated graphics unit 311, in one embodiment,
the graphics unit 311 is capable of executing industry stan-
dard graphics commands such as those specified by the Open
GL and/or Direct X application programming interfaces
(APIs) (e.g., OpenGL 4.1 and Direct X 11).

The processor 310 may also include one or more cores
101-104, although a single core is illustrated in FIG. 3, again,
for the sake of clarity. In many embodiments, the core(s)
101-104 includes internal functional blocks such as one or
more execution units, retirement units, a set of general pur-
pose and specific registers, etc. If the core(s) are multi-
threaded or hyper-threaded, then each hardware thread may
be considered as a “logical” core as well. The cores 101-104
may be homogenous or heterogeneous in terms of architec-
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ture and/or instruction set. For example, some of the cores
may be in order while others are out-of-order. As another
example, two or more of the cores may be capable of execut-
ing the same instruction set, while others may be capable of
executing only a subset of that instruction set or a different
instruction set.

The processor 310 may also include one or more caches,
such as cache 313 which may be implemented as a SRAM
and/or a DRAM. In many embodiments that are not shown,
additional caches other than cache 313 are implemented so
that multiple levels of cache exist between the execution units
in the core(s) 101-104 and memory devices 150B and 151B.
For example, the set of shared cache units may include an
upper-level cache, such as a level 1 (L1) cache, mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other
levels of cache, an (LLC), and/or different combinations
thereof. In different embodiments, cache 313 may be appor-
tioned in different ways and may be one of many different
sizes in different embodiments. For example, cache 313 may
be an 8 megabyte (MB) cache, a 16 MB cache, etc. Addition-
ally, in different embodiments the cache may be a direct
mapped cache, a fully associative cache, a multi-way set-
associative cache, or a cache with another type of mapping. In
other embodiments that include multiple cores, cache 313
may include one large portion shared among all cores or may
be divided into several separately functional slices (e.g., one
slice for each core). Cache 313 may also include one portion
shared among all cores and several other portions that are
separate functional slices per core.

The processor 310 may also include a home agent 314
which includes those components coordinating and operating
core(s) 101-104. The home agent unit 314 may include, for
example, a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the core(s) 101-104 and the
integrated graphics unit 311. The display unit is for driving
one or more externally connected displays.

As mentioned, in some embodiments, processor 310
includes an integrated memory controller (IMC) 331, near
memory cache (MSC) controller, and NVRAM controller
332 all of which can be on the same chip as processor 310, or
on a separate chip and/or package connected to processor
310. DRAM device 144 may be on the same chip or a different
chip as the IMC 331 and MSC controller 124; thus, one chip
may have processor 310 and DRAM device 144; one chip
may have the processor 310 and another the DRAM device
144 and (these chips may be in the same or different pack-
ages); one chip may have the core(s) 101-104 and another the
IMC 331, MSC controller 124 and DRAM 144 (these chips
may be in the same or different packages); one chip may have
the core(s) 101-104, another the IMC 331 and MSC controller
124, and another the DRAM 144 (these chips may be in the
same or different packages); etc.

In some embodiments, processor 310 includes an /O sub-
system 115 coupled to IMC 331. I/O subsystem 115 enables
communication between processor 310 and the following
serial or parallel I/O devices: one or more networks 336 (such
as a Local Area Network, Wide Area Network or the Internet),
storage 1/O device (such as flash/magnetic/optical mass stor-
age 152B, BIOS flash 362, TPM flash 372) and one or more
non-storage 1/0 devices 337 (such as display, keyboard,
speaker, and the like). /O subsystem 115 may include a
platform controller hub (PCH) (not shown) that further
includes several 1/O adapters 338 and other I/O circuitry to
provide access to the storage and non-storage I/O devices and
networks. To accomplish this, I/O subsystem 115 may have at
least one integrated /O adapter 338 for each 1/O protocol
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utilized. 1/O subsystem 115 can be on the same chip as pro-
cessor 310, or on a separate chip and/or package connected to
processor 310.

1/O adapters 338 translate a host communication protocol
utilized within the processor 310 to a protocol compatible
with particular I/0 devices. For flash/magnetic/optical mass
storage 152B, some of the protocols that /O adapters 338
may translate include Peripheral Component Interconnect
(PCI)-Express (PCI-E), 3.0; USB, 3.0; SATA, 3.0; Small
Computer System Interface (SCSI), Ultra-640; and Institute
of Electrical and FElectronics Engineers (IEEE) 1394
“Firewire;” among others. For BIOS flash 362, some of the
protocols that 1/O adapters 338 may translate include Serial
Peripheral Interface (SPI), Microwire, among others. Addi-
tionally, there may be one or more wireless protocol 1/O
adapters. Examples of wireless protocols, among others, are
used in personal area networks, such as IEEE 802.15 and
Bluetooth, 4.0; wireless local area networks, such as IEEE
802.11-based wireless protocols; and cellular protocols.

In some embodiments, the [/O subsystem 115 is coupled to
a TPM control 334 to control access to system persistent
states, such as secure data, encryption keys, platform configu-
ration information and the like. In one embodiment, these
system persistent states are storedina TMP NVRAM 173 and
accessed via NVRAM controller 332.

In one embodiment, TPM 334 is a secure micro-controller
with cryptographic functionalities. TPM 334 has a number of
trust-related capabilities; e.g., a SEAL capability for ensuring
that data protected by a TPM is only available for the same
TPM. TPM 334 can protect data and keys (e.g., secrets) using
its encryption capabilities. In one embodiment, TPM 334 has
a unique and secret RSA key, which allows it to authenticate
hardware devices and platforms. For example, TPM 334 can
verify that a system seeking access to data stored in computer
system 300 is the expected system. TPM 334 is also capable
of reporting the integrity of the platform (e.g., computer sys-
tem 300). This allows an external resource (e.g., a server on a
network) to determine the trustworthiness of the platform but
does not prevent access to the platform by the user.

In some embodiments, 1/O subsystem 315 also includes a
Management Engine (ME) 335, which is a microprocessor
that allows a system administrator to monitor, maintain,
update, upgrade, and repair computer system 300. In one
embodiment, a system administrator can remotely configure
computer system 300 by editing the contents of the decode
table 333 through ME 335 via networks 336.

For convenience of explanation, the remainder of the appli-
cation sometimes refers to NVRAM 142 as a PCMS device.
A PCMS device includes multi-layered (vertically stacked)
PCM cell arrays that are non-volatile, have low power con-
sumption, and are modifiable at the bit level. As such, the
terms NVRAM device and PCMS device may be used inter-
changeably in the following discussion. However it should be
realized, as discussed above, that different technologies
besides PCMS may also be utilized for NVRAM 142.

It should be understood that a computer system can utilize
NVRAM 142 for system memory, mass storage, firmware
memory and/or other memory and storage purposes even if
the processor of that computer system does not have all of the
above-described components of processor 310, or has more
components than processor 310.

In the particular embodiment shown in FIG. 3, the MSC
controller 124 and NVRAM controller 332 are located on the
same die or package (referred to as the CPU package) as the
processor 310. In other embodiments, the MSC controller
124 and/or NVRAM controller 332 may be located off-die or
off-CPU package, coupled to the processor 310 or CPU pack-
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age over a bus such as a memory bus (like a DDR bus (e.g., a
DDR3, DDRA4, etc)), a PCI express bus, a desktop manage-
ment interface (DMI) bus, or any other type of bus.

Implementation of Near Memory as Caching Layer
for Far Memory

As discussed above, in various configurations, near
memory can be configured as a caching layer for far memory.
Here, specific far memory storage devices (e.g., specific
installed PCMS memory chips) may be reserved for specific
(e.g., a specific range of) system memory addresses. As such,
specific near memory storage devices (e.g., specific installed
DRAM memory chips) may be designed to act as a caching
layer for the specific far memory storage devices. Accord-
ingly, these specific near memory storage devices should have
the effect of reducing the access times of the most frequently
accessed system memory addresses that the specific far
memory storage devices are designed to provide storage for.

According to a further approach, observed in FIG. 4, the
near memory devices are configured as a direct mapped cache
for their far memory counterparts. As is well understood in
the art, a direct mapped cache is designed such that each entry
in the cache is reserved for a unique set of entries in the deeper
storage. That is, in this case, the storage space of the far
memory 401 can be viewed as being broken down into dif-
ferent storage sets 401_1,401_2, . . . 401_N, where, each set
is allocated an entry in the cache 402. As such, as observed in
FIG. 4, entry 402_1 is reserved for any of the system memory
addresses associated with set 401_1; entry 402_2 is reserved
for any of the system memory addresses associated with set
401_2, etc. Generally, any of the structural “logic blocks” that
appear in FIG. 4, as well as any of FIGS. 7a, 8a and 11 may
be largely, if not entirely, implemented with logic circuitry.

FIG. 4 also shows a portion of an exemplary system
memory address that may be provided, for instance, from a
CPU processing core for a read or write transaction to or from
system memory Hssentially, a group of set bits 404 define
which set the system memory address is associated with, and,
a group of tag bits 405 define which entry in the appropriate
set (which may correspond to a cache line) the system
memory address corresponds to. Lower ordered bits 403
identify a specific byte within a cache line.

For example, according to one exemplary implementation,
the cache line size is 64 bytes, cache 402 is implemented with
approximately 1 Gigabyte (GB) of DRAM storage and far
memory storage 401 is implemented with approximately 16
Gigabytes (GB) of PCMS storage. Address portions 405, 404
and 403 correspond to 34 bits of address space A[33:0]. Here,
lower ordered bits 403 correspond to address bits A[5:0], set
address bits 404 correspond to address bits A[29:6] and tag
address bits 405 correspond to address bits A[33:30].

From this arrangement, note that the four tag bits 405
specify a value within a range of 1 to 16 which corresponds to
the ratio of DRAM storage to PCMS storage. As such, each
entry in cache 402 will map to (i.e., provide cacheable support
across) sixteen different far memory 401 cache lines. This
arrangement essentially defines the size of each set in far
memory 401 (16 cache lines per set). The number of sets,
which corresponds to the number of entries in cache 402, is
defined by set bits 404. In this example, set bits 404 corre-
sponds to 24 bits of address space (address bits A[29:6])
which, in turn, corresponds to 16,777,216 cache entries/sets.
A 64 byte cache line therefore corresponds to approximately
1 GB of storage within cache 402 (16,777,216x64 bytes=1,
073,741,824 bytes).
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If the size of the cache 402 were doubled to include 2 GB
of DRAM, there would be eight cache lines per set (instead of
sixteen) because the DRAM:PCMS ratio would double to
2:16=1:8. As such the tag 405 would be expressed with three
bits (A[33:31]) instead of four bits. The doubling of the
DRAM space is further accounted for by providing an addi-
tional most significant bit to set bits 404 (i.e., address bits
A[30:6] instead of A[29:6]), which, essentially doubles the
number of sets.

The far memory storage 401 observed in FIG. 4 may cor-
respond to only a subset of the computer system’s total far
memory storage. For example, a complete system memory
for a computing system may be realized by incorporating
multiple instances of the near/far memory sub-system
observed in FIG. 4 (e.g., one instance for each unique subset
of system memory addresses). Here, according to one
approach, higher ordered bits 408 are used to indicate which
specific instance amongst the multiple near/far memory sub-
systems apply for a given system memory access. For
example, if each instance corresponds to a different memory
channel that stems from a host side 409 (or, more generally, a
host), higher ordered bits 408 would effectively specify the
applicable memory channel. In an alternate approach,
referred to as a “permuted” addressing approach, higher order
bits 408 are not present. Rather, bits 405 represent the highest
ordered bits and bits within lowest ordered bit space 403 are
used to determine which memory channel is to be utilized for
the address. This approach is thought to give better system
performance by effectively introducing more randomization
into the specific memory channels that are utilized over time.
Address bits can be in any order.

FIG. 5 (write) and FIG. 6 (read) depict possible operation
schemes of the near/far memory subsystem of FIG. 4. Refer-
ring to FIG. 4 and FIG. 5, for write operations, an integrated
memory controller 431 receives a write transaction that
includes the write address and the data to be written 501. The
transaction may be stored in a buffer 415. Upon determining
which near/far memory sub-system instance applies (e.g.,
from analysis of higher ordered bits 408), the hit miss logic
414 of memory side control (MSC) logic 424 provides the set
bits 404 to near memory cache interface logic 416 to cause the
cached entry for the applicable set to be read 502 from the
near memory cache 402. Here, near memory cache interface
logic 416 is responsible for implementing a protocol, includ-
ing the generation/reception of electrical signals, specific to
the near memory (e.g., DRAM) on memory channel 401.

As observed in FIG. 4, in an embodiment, each cache entry
includes, along with its corresponding data 410, an embedded
tag 411, a dirty bit 412 and ECC information 413. The embed-
ded tag 411 identifies which cache line in the entry’s appli-
cable set in far memory 401 is cached in cache 402. The dirty
bit 412 indicates whether the cached entry is the only valid
copy for the cache line. ECC information 413, as is known in
the art, is used to detect and possibly correct for errors that
occurred writing and/or reading the entry from/to the cache
402.

After the cached entry for the applicable set is read with the
near memory cache interface logic 416, the MSC hit/miss
logic 414 compares the embedded tag 411 of the just read
entry against the tag 405 of the address of the write transac-
tion 503 (note that the entry read from the cache may be stored
in a read buffer 417). If they match, the cached entry corre-
sponds to the target of the transaction (cache hit). Accord-
ingly, the hit/miss logic 414 causes the near memory cache
interface logic to write over 504 the just read cache entry in
the cache 402 with the new data received for the transaction.
The MSC control logic 424 in performing the write keeps the
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value of the embedded tag 411 unchanged. The MSC control
logic 424 also sets the dirty bit 412 to indicate that the newly
written entry corresponds to the only valid version the cache
line, and calculates new ECC data for the cache line. The
cache line read from the cache 402 in read buffer 417 is
discarded. At this point, the process ends for a cache hit.

If the embedded tag 411 of the cache line read from cache
402 does not match the tag 405 of the transaction address
(cache miss), as with a cache hit, the hit/miss logic 414 causes
the near memory cache interface logic 416 to write the 505
new data associated with the transaction into the cache 402
(with the set bits 404 specified as the address) to effectively
write over the cache line that was just read from the cache 402.
The embedded tag 411 is written as the tag bits 405 associated
with the transaction. The dirty bit 412 is written to indicate
that the cached entry is the only valid copy for this cache line.
The memory controller’s ECC logic 420 calculates ECC
information 413 for the cache line received with the transac-
tion and the near memory cache interface logic 416 writes it
into cache 402 along with the cache line.

With respect to the cache line that was just read from the
cache and is stored in the read buffer 417, the near memory
hit/miss logic 414 checks its associated dirty bit 506, and, if
the dirty bit indicates that the cache line in the read buffer 417
is the only valid version of the cache line (the dirty bit is
“set”), the hit/miss logic 414 causes the NVRAM controller
432, through its far memory interface logic 418, to write 507
the cache line into its appropriate far memory location (using
the set bits 404 of the transaction and the embedded tag bits
411 of the cache line that was just read as the address). Here,
far memory interface logic 418 is responsible for implement-
ing a protocol, including the generation/reception of electri-
cal signals, specific to the far memory (e.g., PCMS) on
memory channel 401. If the dirty bit of the cache line in the
read buffer 417 indicates that the cache line in the read buffer
417 is not the only valid version of the cache line, the cache
line in the read buffer is discarded.

Here, during moments where the interfaces 416, 418 to the
near memory cache and far memory are not busy, the MSC
control logic 424 may read cache line entries from the cache
402, and, for those cache line entries having its dirty bit set,
the memory controller will rewrite it into far memory and
“clear” its associated dirty bit to indicate that the cache line in
cache 402 is no longer the only valid copy of the cache line.

Moreover, it is pertinent to point out that, the respective
near memory cache and far memory interfaces 416, 418 can
be completely isolated from one another, or, have some over-
lap with respect to one another. Here, overlap corresponds to
aspects of the respective near and far memory protocols and/
or signaling that are the same (e.g., same clocking signals,
same on-die termination signals, same addressing signals,
etc.) and therefore may use the same circuitry for access to
near memory cache and far memory. Non overlapping regions
correspond to aspects of the two protocols and/or signaling
that are not the same and therefore have circuitry applicable to
only one of near memory cache and far memory.

The architecture described above can be used in implemen-
tations where the MSC control logic 424 is coupled to the near
memory cache 402 over a different isolated memory channel
than the memory channel through which the NVRAM con-
troller 432 and far memory 401 are coupled through. Here, for
any specific channel, one of interfaces 416, 418 is enabled
while the other is disabled depending on whether near
memory cache or far memory is coupled to the channel.
Likewise, one of MSC control logic 424 and NVRAM con-
troller 432 is enabled while the other is disabled. In an
embodiment, a configuration register associated with the
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memory controller (not shown), which, for example, may be
written to by BIOS, determines which configuration is to be
enabled.

The same architecture above may also support another
configuration in which near memory cache and far memory
are coupled to the same channel 421. In this case, the integra-
tion of interfaces 416, 416 can be viewed as a single interface
to the channel 421. According to this configuration, both
interfaces 416, 418 and both controllers 424, 432 are
“enabled” but only one set (interface 416 and controller 424
for near memory and interface 418 and controller 432 for far
memory) is able to use the channel at any particular instant of
time. Here, the usage of the channel over time alternates
between near memory signaling and far memory signaling.
This configuration may be established with, for instance, a
third setting in the aforementioned configuration register. Itis
to this setting that the below discussion mostly pertains.

Here, by being able to use the same channel for both near
memory accesses and far memory accesses, the near memory
cache that is plugged into the channel can be used as the near
memory cache for the far memory storage that is plugged into
the same channel. Said another way, specific system memory
addresses may be allocated to the one, single channel. The far
memory devices that are plugged into the channel provides
far memory storage for these specific system memory
addresses, and, the near memory storage that is plugged into
the same channel provides the cache space for these far
memory devices. As such, the above described transactions
that invoke both near memory and far memory (e.g., because
of'a cache miss and/or a dirty bit that is set) can transpire over
the same channel.

According to one approach, the channel is designed to
include mechanical receptacles/connectors that individual
planar board cards having integrated circuits disposed on
them (e.g., DIMMs) can plug into. Here, the cards have cor-
responding receptacles/connectors that mate with the chan-
nel’s receptacles/connectors. One or more cards having only
far memory storage can be plugged into a first set of connec-
tors to effect the far memory storage for the channel. One or
more cards having only near memory storage can be plugged
into the same channel and act as near memory cache for the far
memory cards.

Here, where far memory storage is inherently denser than
near memory storage but near memory storage is inherently
faster than far memory storage, channels can be designed
with a “speed vs. density” tradeoff in mind. That is, the more
near memory cards plugged into the channel, the faster the
channel will perform but at the cost of less overall storage
capacity supported by the channel. Contra wise, the fewer
near memory cards plugged into to the channel, the slower the
channel will perform but with the added benefit of enhanced
storage capacity supported by the channel. Extremes may
include embodiments where only the faster memory storage
technology (e.g., DRAM) is populated in the channel (in
which case it may act like a cache for far memory on another
channel, or, not act like a cache but instead is allocated its own
specific system memory address space), or, only the slower
memory storage technology (e.g., PCMS) is populated in the
channel.

In other embodiments, near memory and far memory are
disposed on a same card in which case the speed/density
tradeoff is determined by the card even if a plurality of such
cards are plugged into the same channel.

FIG. 6 depicts a read transaction. According to the meth-
odology of FIG. 6, the memory controller 431 receives a read
transaction that includes the read address 611. The transac-
tion may be stored in a buffer 415. Upon determining which
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near/far memory sub-system (e.g., which memory channel)
instance applies, the MSC controller’s hit miss logic 414
provides the set bits 404 to near memory cache interface logic
416 to cause the cached entry for the applicable set to be read
612 from the cache 402.

After the cached entry for the applicable set is read with the
cache interface logic 416, the hit/miss logic 414 compares the
embedded tag 411 of the just read entry against the tag 405 of
the address of the read transaction 613. If they match, the
cached entry corresponds to the target of the transaction
(cache hit). Accordingly, the read process ends. If the embed-
ded tag 411 of the cache line read from cache 402 does not
match the tag 405 of the transaction address (cache miss), the
hit/miss logic 414 causes the far memory interface logic 418
to read 614 the far memory storage at the address specified in
the transaction (403, 404, 405). The cache line read from far
memory is then written into the cache 615, and, if the dirty bit
was set for the cache line that was read from near memory
cache in step 612, the cache line that was read from near
memory cache is written into far memory 616.

Although the MSC controller 424 may perform ECC
checking on the read data that was read from far memory, as
described in more detail below, according to various embodi-
ments, ECC checking may be performed by logic circuitry
422 that resides local to the far memory device(s) (e.g.,
affixed to a same DIMM card that PCMS device(s) are affixed
to). This same logic circuitry 422 may also calculate the ECC
information for a write transaction in the case of a cache miss
and the dirty bit is “set”.

Moreover, in embodiments where the same memory chan-
nel 421 is used to communicate near memory signaling and
far memory signaling, logic circuitry 422 can be utilized to
“speed up” the core write and read processes described above.
Some of these speed ups are discussed immediately below.
Read and Write Transactions with Near Memory and Far
Memory Coupled to a Same Memory Channel
A. Near Memory “in Front of” Far Memory Control Logic

FIG. 7a shows a “near memory in front of”” approach while
FIG. 8a shows a “near memory behind” approach. The “near
memory behind” approach will be discussed in more detail
further below. For each of the models below, as well as their
ensuing discussions, the term “memory controller” or “host”
or “host side” is used to refer (mainly) to circuitry and/or acts
performed by an MSC controller or an NVRAM controller.
Which circuitry applies in a particular situation is straightfor-
ward to understand in that, when near memory cache is being
accessed on the channel, the MSC controller is involved,
whereas, when far memory is being accessed on the channel,
the NVRAM controller is involved. Moreover, the discus-
sions below also refer to “far memory control logic” or a “far
memory controller” that is remote from the host side and is
located proximate to far memory “out on the channel”. Here,
the far memory control logic can be viewed as a component of
the NVRAM controller, with, another component of the
NVRAM controller resident on the host to perform appropri-
ate far memory accesses (consistent with the embodiments
below) from the host side.

Referring to FIG. 7a, note that the near memory storage
devices 702_1, 702_2 . . . 702_N (such as a plurality of
DRAM chips) are coupled to a channel 721 independently of
the coupling of far memory logic circuitry 722 (and its asso-
ciated far memory storage devices 701_1,701_2,...702_M
(such as a plurality of PCMS chips) to the same channel 721.

Said another way, a near memory platform 730 and a far
memory platform 732 are separately connected to the same
channel 721 independently of one another. This approach can
be realized, for example, with different DIMMS having dif-
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ferent respective memory storage technologies plugged into a
same memory channel (e.g., near memory platform 730 cor-
responds to a DRAM DIMM and far memory platform 732
corresponds to a PCMS DIMM). This approach can also be
realized, for example, with a same DIMM that incorporates
different respective memory storage technologies (e.g., near
memory platform 730 corresponds to one side of a DIMM and
far memory platform 732 corresponds to the other side of the
DIMM).

FIG. 7b shows a read transaction that includes a cache miss
where the far memory control logic 722 automatically detects
the cache miss and automatically reads far memory in
response. Referring to FIGS. 7a and 75, the host side MSC
control logic 424a receives a read request 761 and reads the
cache line entry 762 for the applicable set from the cache 702.
As part of the transaction on the channel 721 that accesses the
cache 702, the host side MSC control logic 424a “sneaks” the
tag bits 705 of the original read request onto the channel 721.
In a further embodiment, the host side MSC control logic
424aq can also sneak information 780 indicating that the origi-
nal transaction request received by the memory controller is a
read request (rather than a write request).

According to one approach, explained in more detail
below, the tag bits 705 and read/write information 780 are
“snuck™ on unused row or column addresses of the near
memory address bus. In a further embodiment, more column
address bits are used for this purpose than row address bits.
According to an even further approach, the sneaked informa-
tion 705, 780 is provided over a command bus component of
channel 721 which is used for communicating addressing
information to the near memory storage device (and poten-
tially the far memory devices as well).

Because remote control logic circuitry 722 is connected to
the channel 721, it can “snarf’: 1) the tag bits 705 from the
original request (and indication 780 of a read transaction)
when they are snuck on the channel 721; 2) the read address
applied to the near memory cache 702; and, 3) the cache line
and its associated embedded tag bits 711, dirty bit 712 and
ECC information 713 when read from the near memory cache
702. Here, the snarfing 763 is understood to include storing
any/all of these items of information locally (e.g., in register
space 750 embedded) on logic circuitry 722.

As such, far memory control logic circuitry 722, which also
includes its own hit/miss logic 723, can determine 764
whether there is a cache hit or cache miss concurrently with
the memory controller’s hit/miss logic 714. In the case of a
cache hit, the far memory control logic circuitry 722 takes no
further action and the memory controller 731 performs the
ECC calculation on the data read from cache and compares it
with the embedded ECC information 714 to determine
whether or not the cache read data is valid.

However in the case of a cache miss, and with knowledge
that the overall transaction is a read transaction (e.g., from
snuck information 780), the logic circuitry 722 will recognize
that a read of its constituent far memory storage 701 will be
needed to ultimately service the original read request. As
such, according to one embodiment, logic circuitry 722 can
automatically read 765 its associated far memory resources
732 to retrieve the desired read information, perform an ECC
calculation on the cache line read from far memory (which
also has embedded ECC information) and, if there is no
corruption in the data, provide the desired far memory read
information.

In order to perform this kind of “automatic read”, as
alluded to just above, logic circuitry 722 should be informed
by the memory controller 731 in some manner that the overall
transaction is a read operation as opposed to a write operation
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(if the above described transaction were a write transaction,
logic circuitry would not need to perform a read of far
memory). According to one embodiment, as already men-
tioned above, read/write information 780 that is indicative as
to whether a write transaction or a read transaction is at play
is “snuck” to logic circuitry 722 (e.g., along with the tag
information 705 of the original transaction request).

Concurrently with the far memory control logic 722 auto-
matically reading far memory 732, the memory controller
731 can schedule and issue a read request 786 on the channel
721 to the far memory control logic 722. As described inmore
detail below, in an embodiment, the memory controller 731 is
configured to communicate two different protocols over
channel 721: 1) a first protocol that is specific to the near
memory devices 730 (e.g., an industry standard DDR DRAM
protocol); and, ii) a second protocol that is specific to the far
memory devices 732 (e.g., a protocol that is specific to PCMS
devices). Here, the near memory cache read request 762 is
implemented with the first protocol and, by contrast, the read
request to far memory 786 is implemented with the second
protocol.

In a further embodiment, as described in more detail fur-
ther below, because the time needed by the far memory
devices 732 to respond to the read request 786 cannot be
predicted with certainty, an identifier 790 of the overall read
transaction (“transaction id”) is sent to the far memory control
logic 722 along with the far memory read request 786 sent by
the memory controller. When the data is finally read from far
memory 732 it is eventually sent 787 to the memory control-
ler 731. In an embodiment, the transaction identifier 790 is
returned to the memory controller 731 as part of the transac-
tion on the channel 721 that sends the read data to the memory
controller 731.

Here, the inclusion of the transaction identifier 790 serves
to notify the memory controller 731 of the transaction to
which the read data pertains to. This may be especially impor-
tant where, as described in more detail below, the far memory
control logic 722 maintains a buffer to store multiple read
requests from the memory controller 731 and the uncertainty
of'the read response time of the far memory leads to “out-of-
order” (O0O) read responses from far memory (a subsequent
read request may be responded to before a preceding read
request). In a further embodiment, a distinctive feature of the
two protocols used on the channel 721 is that the near memory
protocol treats devices 730 as slave devices that do not for-
mally request use of the channel 721 (because their timing is
well understood and under the control of the memory con-
troller). By contrast, the far memory protocol permits far
memory control logic 722 to issue a request to the memory
controller 731 for the sending of read data to the memory
controller 731. As a further point of distinction, the tag 705
and r/w information 780 that is “snuck™ onto the channel
during the near memory cache read is “snuck” in the sense
that this information is being transported to the far memory
control logic circuitry and is pertinent to a potential far
memory access even though, technically, the near memory
protocol is in play.

Alternatively to the “automatic” read discussed above with
respect to FI1G. 75, the far memory control logic circuitry 722
can be designed to refrain from automatically reading the
needed data and instead wait for a read request and corre-
sponding address from the memory controller in the case of a
cache miss. In this case, logic circuitry 722 need not snarfthe
address when the near memory cache is read, nor does any
information concerning whether the overall transaction is a
read transaction or a write transaction need to be snuck to
logic circuitry 722. The sending of a transaction ID 790 with
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the read request to the far memory control logic 722 may still
be needed if far memory control logic 722 can service read
requests out of order.

Regardless as to whether or not the logic circuitry 722
automatically performs a needed far memory read on a cache
miss, as observed in FIG. 7c¢, in the case of a cache miss
detected by the far memory control logic circuitry 722, the
hit/miss logic circuitry 723 of far memory control logic cir-
cuitry 722 can be designed to check if the dirty bit 712 is set
in the snarfed cache line 766. If so, the snarfed cache line will
need to be written to far memory 732. As such, logic circuitry
722 can then automatically store 767 the snarfed cache line
into its constituent far memory storage resources 732 without
a formal request from the memory controller (including the
recalculation of the ECC information before it is stored to
ensure the data is not corrupted).

Here, depending on implementation, for the write opera-
tion to the far memory platform, logic circuitry 722 can
construct the appropriate write address either by snarfing the
earlier read address of the near memory cache read as
described above and combining it with the embedded tag
information of the cache line that was read from the near
memory cache. Alternatively, if logic circuitry 722 does not
snarf the cache read address, it can construct the appropriate
write address by combining the tag information embedded in
the snarfed cache line with a read address provided by the
memory controller when it requests the read of the correct
information from far memory. Specifically, logic circuitry
722 can combine the set and lowered ordered bits portions
404, 405 of the read request with the embedded tag 711 on the
snarfed cache line to fully construct the correct address.

Automatically performing the write to the far memory
platform 732 as described above eliminates the need for the
memory controller 731 to request the write to the far memory
platform, but also, and in furtherance, completely frees the
channel 721 of any activity related to the write to the far
memory platform. This may correspond to a noticeable
improvement in the speed of the channel.

It is pertinent to point that the pair of speed-ups described
just above: automatic read of far memory (FIG. 74) and
automatic write to far memory (FIG. 7¢) can be implemented
in any combination (both, just one) depending on designer
choice.

As amatter of contrast, a basic read transaction without any
speedup offered by the presence of the far memory controller
722 nominally includes six atomic operations for a read trans-
action that suffers a cache miss when the dirty bit is set. These
are: cache read request, cache read response, far memory read
request, far memory read response, near memory write
request (cache update) and far memory write request (load
cache line read from cache into far memory because dirty bit
is set).

By contrast, with both of the speedups of FIG. 75 (auto-
matic read of far memory) and FIG. 7¢ (automatic write to far
memory) being implemented, the overall transaction can be
completed with only four atomic operations on the channel.
That is, the far memory read request and far memory write
request can be eliminated.

The above discussion concerned read transaction pro-
cesses when the near memory is “in front of” the far memory
control logic. In the case of a write transaction process, refer-
ring to FIG. 74, in response to the receipt of a write transac-
tion 751, the memory controller initiates a near memory
cache read, and, sneaks tag information 705 and information
780 indicating that the overall transaction is a write and not a
read as described above 752. After the read of near memory is
complete, the memory controller 731 writes the new data over
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the old data in cache 753. In an embodiment, the memory
controller checks to see if there is a cache hit 754 and/or if the
dirty bit is set 755 to understand what action the far memory
control logic circuitry will take (e.g., for channel scheduling),
but otherwise takes no further action on the channel.

Far memory control logic circuitry 722 snarfs the address
used to access the cache, the sneaked information 705, 780
and the cache line read from cache with its associated infor-
mation 756 and detects the cache miss on its own accord 757
as described above. If there is a cache hit, far memory control
logic takes no further action. If there is a cache miss, depend-
ing on design implementation, similar to the processes
described above, logic circuitry 722 can also detect 758
whether the dirty bit is set and write 759 the snarfed cache line
into far memory automatically (without a request from the
memory controller).

In an alternate approach, the memory controller 731, after
detecting a cache miss and that the dirty bit is set 754, 755,
sends arequest to the far memory control logic 722 (including
the write address) to write the cache line read from the cache
into far memory. The memory controller can also send the
cache line read from cache to the far memory control logic
over the channel 721.

B. Near Memory “Behind” Far Memory Control Logic

Referring to FIG. 8a, which depicts a “near memory
behind” architecture, note that the near memory storage
devices 802_1, 802_2 . . . 802_N (such as a plurality of
DRAM chips) are coupled to at least a portion of the channel
821 through the far memory control logic circuitry 822 at
least to some extent. Here, whereas the far memory control
logic for a “near memory in front of approach” includes
distinct interfaces for the channel and far memory, by con-
trast, the far memory control logic for the “near memory
behind” approach includes distinct interfaces for the channel,
far memory and near memory. According to one embodiment,
the channel 821 can be viewed as having three principle
sub-components: 1) acommand bus 841 (over which read and
write requests and their corresponding addresses are sent); 2)
adata bus 842 (over which read and write data is sent); and, 3)
control signals 843 (e.g., select signal(s), clock enable
signal(s), on-die termination signal(s)).

As depicted in the particular approach of FIG. 8a, the data
bus 890 of the near memory storage platform 830 may be
independently coupled 891 to the data bus 842, but, is coupled
to the command bus 841 and control signals 843 components
through logic circuitry 822. The far memory storage platform
831 is coupled to all three subcomponents 841, 842, 843
through logic circuitry 822. In an alternate embodiment, the
data bus 890 of the near memory storage platform 830, like
the far memory storage platform, is coupled to the channel’s
data bus component 842 through logic circuitry 822. The
“near memory behind” architecture may at least be realized,
for example, with the logic circuitry 822, near memory stor-
age devices 830 and far memory storage devices 831 all being
implemented on a same physical platform (e.g., a same
DIMM card that plugs into the channel where multiple such
DIMM cards can be plugged into the channel).

FIG. 856 shows a read process for a “near memory behind”
architecture in the case of a cache miss. Referring to FIGS. 8a
and 85, if the memory controller 831 receives a read request
861 it sends, over command bus 841, a read request 862 (e.g.,
in packetized form) to far memory control logic circuitry 822
containing the set bits 804 and lower ordered bits 803 of the
original request’s address. Moreover, as part of the read
request sequence, the tag bits 805 of the original read request
(e.g., from the CPU) is “snuck™ 862 onto the channel 821.
According to one approach, explained in more detail below,
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the tag bits 805 are “snuck’ on the command bus component
841 of the channel 821 (which is used for communicating
addressing information to the far memory control logic 822
for both near and far memory accesses). Here, unlike the far
memory “in front of”” approach, for reasons explained further
below, additional information that indicates whether the
original transaction is a read or write need not be snuck on the
channel. Here, the far memory control logic 822 can “key” off
of'the read request to far memory by the memory controller to
determine that the overall transaction is aread transaction and
not a write transaction.

Logic circuitry 822, in response to the received read
request, presents the associated address on the local near
memory address bus 870 to effect a cache read operation to
the near memory platform. The appropriate cache line from
the near memory platform 830 is subsequently presented 804
on the data bus 842 either directly by the near memory plat-
form 830, in which case the memory controller performs the
ECC calculation, or through the far memory control logic
822, in which case both logic 822 and memory controller 831
may perform ECC calculations.

Because far memory control logic circuitry 822 is con-
nected to the channel 821, it can “snarf” or otherwise locally
store 863 (e.g., in its own register space 850) any of: 1) the tag
bits 805 that were snuck on the channel 821; 2) the address
information used to address the near memory cache 830; and,
3) the cache line from near memory 830 and its associated
embedded tag bits 811, dirty bit 812 and ECC information
813 when provided by the near memory platform 830.

In response, the hit/miss logic 823 of logic circuitry 822
can determine whether there is a cache hit or cache miss
concurrently with the memory controller’s hit/miss logic 814.
In the case of a cache hit, the information read from near
memory is provided to the memory controller 831 and logic
circuitry 822 takes no further action. In an embodiment where
the near memory cache platform is connected to the data bus
without going through logic circuitry 822, the memory con-
troller 831 performs the ECC calculation on the cache line
read from near memory cache. In another embodiment where
the near memory cache platform connects to the data bus
through logic circuitry 822, the ECC calculation on the cache
line read from near memory cache is calculated on both logic
circuitry 822 and the memory controller 831.

In the case of a cache miss detected by the logic circuitry
822, the cache/hit miss logic circuitry 823 will recognize that
aread of the far memory storage platform 831 will be needed
to ultimately service the original read request. As such,
according to one embodiment, the logic circuitry 822 can
automatically read from the far memory platform 831 to
retrieve the desired read information 864 and perform an ECC
calculation.

Concurrently with the far memory control logic 822 auto-
matically reading far memory 831, recalling that the memory
controller 831 has already been provided with the cache line
read from near memory, the memory controller 831 can like-
wise detect the cache miss and, in response, schedule and
issue a read request 886 on the channel 821 to the far memory
control logic 822. As alluded to above and as described in
more detail below, in an embodiment, the memory controller
831 is able to communicate two different protocols over chan-
nel 821: 1) a first protocol that is specific to the near memory
devices 830 (e.g., an industry standard DDR DRAM proto-
col); and, ii) a second protocol that is specific to the far
memory devices 831 (e.g., a protocol that is specific to PCMS
devices). Here, the near memory cache read 862 is imple-
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mented with a first protocol over channel 821, and, by con-
trast, the read request to far memory 886 is implemented with
the second protocol.

In a further embodiment, as alluded to above and as
described in more detail further below, because the time
needed by the far memory devices 831 to respond to the read
request 886 cannot be predicted with certainty, an identifier
890 of'the overall read transaction (“transaction id”) is sent to
the far memory control logic 822 along with the far memory
read request 886 sent by the memory controller. When the
data is finally read from far memory 831 it is eventually sent
887 to the memory controller 831. In an embodiment, the
transaction identifier 890 is returned to the memory controller
831 as part of the transaction on the channel 821 that sends the
read data to the memory controller 831.

Here, the inclusion of the transaction identifier 890 serves
to notify the memory controller 831 of the transaction to
which the read data pertains to. This may be especially impor-
tant where, as described in more detail below, the far memory
control logic 822 maintains a buffer to store multiple read
requests from the memory controller 831 and the uncertainty
of'the read response time of the far memory leads to “out-of-
order” (O0O) read responses from far memory (a subsequent
read request may be responded to before a preceding read
request).

In a further embodiment, where two different protocols are
used on the channel, a distinctive feature of the two protocols
is that the near memory protocol treats devices 830 as slave
devices that do not formally request use of the channel 821
(because the timing of the near memory devices is well under-
stood and under the control of the memory controller). By
contrast, the far memory protocol permits far memory control
logic 822 to issue a request to the memory controller 831 for
the sending of read data to the memory controller 831. As an
additional point of distinction, the tag 805 information that is
“snuck” onto the channel during the near memory cache read
is “snuck” in the sense that this information is being trans-
ported to the far memory control logic circuitry 822 for a
potential far memory read even though, technically, the near
memory protocol is in play.

Alternatively to automatically performing the far memory
read, the far memory control logic circuitry 822 can be
designed to refrain from automatically reading the needed
data in far memory and wait for a read request and corre-
sponding address from the memory controller 831. In this
case, logic circuitry 822 does not need not to keep the address
when the near memory cache is read, nor does it need any
sneaked information 880 concerning whether the overall
transaction is a read transaction or a write transaction from the
memory controller 831.

Regardless as to whether or not the logic circuitry 822
automatically performs a far memory read in the case of a
cache miss, as observed in the process of FIG. 8¢, the hit/miss
logic circuitry 823 of logic circuitry 822 can be designed to
write the cache line that was read from near memory cache
into far memory when a cache miss occurs and the dirty bit is
set. In this case, at a high level, the process is substantially the
same as that observed in FIG. 7c—except that the write to
near memory 830 is at least partially hidden 867 from the
channel 821 in the sense that the near memory platform 830 is
not addressed over the channel. If the data bus 895 of the near
memory platform 830 is not directly coupled to the data bus of
the channel 842, but is instead coupled to the data bus 842 of
the channel through the far memory control logic 822, the
entire far memory write can be hidden from the channel 821.

Automatically performing the write to the far memory
platform 831 in this manner not only eliminates the need for
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the memory controller 831 to request the write, but also,
completely frees the channel 821 of any activity related to the
write to the far memory platform 831. This should correspond
to a noticeable improvement in the speed of the channel.

Additional efficiency may be realized if the far memory
control logic circuitry 822 is further designed to update the
near memory cache platform 830 with the results of a far
memory read operation, in the case of a cache miss, in order
to effect the cache update step. Here, as the results of the far
memory read operation 869 correspond to the most recent
access to the applicable set, these results also need to be
written into the cache entry for the set in order to complete the
transaction. By updating the cache with the far memory read
response, a separate write step over the channel 821 to near
memory to update the cache is avoided. Here, some mecha-
nism (e.g., additional protocol steps) may need to be imple-
mented into the channel so that the far memory control logic
can access the near memory (e.g., if the usage of the near
memory is supposed to be scheduled under the control of the
memory controller 831).

It is pertinent to point that the speed-ups described just
above: automatic read of far memory (FIG. 85), automatic
write to far memory (FIG. 8¢), and cache update concurrent
with read response may be implemented in any combination
(all, any two, just one) depending on designer choice.

In the case of a write transaction process, according to one
approach where the near memory data bus 880 is directly
coupled to the channel data bus 842, the process described
above with respect to FIG. 7d can be performed. Another
approach, presented in FIG. 84, may be used where the near
memory data bus 880 is coupled to the channel data bus 842
through the far memory control logic 822.

According to the process of FIG. 84, in response to the
receipt of a write transaction 851, the memory controller
sends a write command 852 to the far memory control logic
822 (including the corresponding address and data) and
sneaks the write transaction’s tag information over the chan-
nel. In response, the far memory control logic 822 performs a
read 853 of the near memory cache platform 830 and deter-
mines from the embedded tag information 811 and the
sneaked tag information 805 whether a cache miss or cache
hit has occurred 854. In the case of a cache hit or a cache miss
when the dirty bit is not set 855, the new write data received
with the write command is written 856 to near memory cache
830. In the case of a cache miss and the dirty bit is set, the far
memory control logic circuitry writes the new write data
received with the write command into near memory cache
and writes the evicted cache line just read from near memory
830 into far memory 831.

Recall from the discussion of the read transaction of FIG.
85 that information indicative of whether the overall transac-
tion is a read or write does not need to be snuck to the far
memory control logic in a “near memory behind” approach.
This can be seen from FIGS. 856 and 84 which show the
memory controller initially communicating a near memory
read request in the case of an overall read transaction (FIG.
8a), or, initially communicates a near memory write transac-
tion in the case of an overall write transaction (FIG. 84).

Atomic Channel Transactions and Physical Channel
Integration

Asobserved in FIGS. 7a and 8a, communications between
the memory controller and near memory devices may be
carried over a same channel that communications between the
memory controller and far memory devices are communi-
cated. Further, as mentioned above, near memory and far
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memory may be accessed by the memory controller with
different protocols (e first protocol for accessing near
memory and a second protocol for accessing far memory. As
such two different protocols may be implemented, for
example, on a same memory channel. Various aspects of these
protocols are discussed immediately below.

a. Near Memory Cache Access (First Protocol)

Two basic approaches for accessing near memory were
presented in the sections above: a first where the near memory
storage devices reside “in front of” the far memory control
logic, and, a second where the near memory storage devices
reside “behind” the far memory control logic.

i. Near Memory in Front

At least in the case where the near memory devices are
located “in front of” the far memory control logic, it may be
beneficial to preserve or otherwise use an existing/known
protocol for communicating with system memory. For
example, in the case where near memory cache is imple-
mented with DRAM devices affixed to a DIMM card, it may
be beneficial to use a memory access protocol that is well
established/accepted for communicating with DRAM
devices affixed to a DIMM card (e.g., either a presently well
established/accepted protocol, or, a future well established/
accepted protocol). By using a well established/accepted pro-
tocol for communicating with DRAM, economies of scale
may be achieved in the sense that DIMM cards with DRAM
devices that were not necessarily designed for integration into
a computing system having near and far memory levels may
nevertheless be “plugged into” the memory channel of such a
system and utilized as near memory.

Moreover, even in cases where the near memory is located
“behind” the far memory control logic, when attempting to
access near memory, the memory controller may nevertheless
be designed to communicate to the far memory control logic
using well established/known DRAM memory access proto-
col so that the system as a whole may offer a number of
different system configuration options to a user of the system.
For example, a user can choose between using: 1) “DRAM
only” DIMM cards for near memory; or, 2) DIMM cards
having both DRAM and PCMS devices integrated thereon
(with the DRAM acting as the near memory for the PCMS
devices located on the same DIMM).

Implementation of a well established/known DRAM pro-
tocol also permits a third user option in which a two level
memory scheme (near memory and far memory) is not
adopted (e.g., no PCMS devices are used to implement sys-
tem memory) and, instead, only DRAM DIMMs are installed
to effect traditional “DRAM only” system memory. In this
case, the memory controller’s configuration would be set so
that it behaved as a traditional memory controller (that does
not utilize any of the features described herein to effect near
and far memory levels).

As such, logic circuitry that causes the memory controller
to behave like a standard memory controller would be
enabled, whereas, logic circuitry that causes the memory
controller to behave in a manner that contemplates near and
far memory levels would be disabled. A fourth user option
may be the reverse where system memory is implemented
only in an alternative system memory technology (e.g., only
PCMS DIMM cards are plugged in). In this case, logic may be
enabled that causes the memory controller to execute basic
read and write transactions only with a different protocol that
is consistent with the alternative system memory technology
(e.g., PCMS specific signaling).

FIG. 9a shows an exemplary depiction of a memory chan-
nel 921 that is adapted to support a well established/known
DRAM access protocol (such as Double Data Rate (“DDR”)
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which effects read and write accesses on rising and falling
edges of a same signal). The channel 921 can be viewed as
having three principle sub-components: 1) a command bus
941 (over which read and write requests and their correspond-
ing addresses are sent); 2) a data bus 942 (over which read and
write data is sent); and, 3) control signals 943 (select signal(s)
943_1, clock enable signal(s) 943_2, on-die termination sig-
nal(s) 943_3). In an embodiment, as described above, the
memory controller 909 presents traditional DDR signals on
the channel when it is accessing near memory cache regard-
less if'it is “talking to” actual DRAM devices on one or more
DIMM cards, and/or, one or more far memory control logic
chips on one or more same or additional DIMM cards.

According to one embodiment of the operation of channel
921, for near memory accesses: 1) the command bus 941
carries packets in the direction from the memory controller
909 toward the near memory storage devices, where, each
packet includes a read or write request and an associated
address; and, 2) the data bus 942 carries write data to targeted
near memory devices, and, carries read data from targeted
near memory devices.

As observed in FIG. 9a, the data bus 942 is composed of
additional lines beyond actual read/write data lines 942_1.
Specifically, the data bus 942 also includes a plurality of ECC
lines 942_2, and strobe lines 942_3. As well known, ECC bits
are stored along with a cache line’s data so that data corrup-
tion errors associated with the reading/writing of the cache
line can be detected. For example, a 64 byte (64 B) cache line
may additionally include 8 bytes (8 B) of ECC information
such that the actual data width of the information being stored
is 72 bytes (72 B). Strobes lines 942_3 are typically assigned
on a per data line basis (e.g., a strobe line pair is assigned for
every 8 or 4 bits of data/ECC). In a double data rate approach,
information can be written or read on both rising and falling
edges of the strobes 942_3.

With respect to the control lines 943, in an embodiment,
these include select signals 943_1, clock enable lines 943_2,
and on-die termination lines 943_3. As is well known, mul-
tiple DIMM cards can be plugged into a same memory chan-
nel. Traditionally, when a memory controller reads or writes
data at a specific address, it reads or writes the data from/to a
specific DIMM card (e.g., an entire DIMM card or possibly a
side of a DIMM card or other portion of a DIMM card). The
select signals 943_1 are used to activate the particular DIMM
card (or portion of a DIMM card) that is the target of the
operation, and, deactivate the DIMM cards that are not the
target of the operation.

Here, the select signals 943_1 may be determined from the
bits of the original read or write transaction (e.g., from the
CPU) which effectively specify which memory channel of
multiple memory channels stemming from the memory con-
troller that is the target of the transaction, and, further, which
DIMM card of multiple DIMM cards plugged into the iden-
tified channel is the target of the transaction. Select signals
943_1 could conceivably be configured such that each DIMM
card (or portion of a DIMM) plugged in a same memory
channel receives its own one unique select signal. Here, the
particular select signal sent to the active DIMM card (or
portion of a DIMM card) for the transaction is activated,
while the select signals sent to the other DIMM cards are
deactivated. Alternatively, the signal signals are routed as a
bus to each DIMM card (or portion of a DIMM card). The
DIMM card (or portion of a DIMM card) that is selected is
determined by the state of the bus.

The clock enable lines 943 _2 and on-die termination lines
943_3 are power saving features that are activated before
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read/write data is presented on the channel’s data bus 942,
and, deactivated after read/write data is presented on the
channel’s data bus 942_1.

In various embodiments, such as near memory cache con-
structed from DRAM, the timing of near memory transac-
tions are precisely understood in terms of the number of clock
cycles needed to perform each step of a transaction. That is,
for near memory transactions, the number of clock cycles
needed to complete a read or write request is known, and, the
number of clock cycles needed to satisfy a read or write
request is known.

FIG. 10 shows an atomic operation sequence for read and
write operations of a near memory access protocol as applied
to near memory (e.g., over a memory channel as just
described above). According to the methodology of FIG. 10,
a targeted DIMM card (or portion of a DIMM card) amongst
multiple DIMM cards that are plugged into a same memory
channel is selected through activation of appropriate select
lines 1001. Clock enable lines and on-die termination lines
are then activated 1002 (conceivably there may be some over-
lap of the activation of the select lines and the clock enable
and on-die termination lines). A read or write command with
the applicable address is then sent (e.g., over the command
bus) 1003. Only the selected/activated DIMM card (or por-
tion of a DIMM card) can receive and process the command.
In the case of a write, write data is written into the activated
devices (e.g., from a memory channel data bus) 1004. In the
case of a read, read data from the activated devices is pre-
sented (e.g., on a memory channel data bus) 1004.

Note that the process of FIG. 10, although depicting atomic
operations to near memory in a future memory protocol, can
also be construed consistently with existing DDR protocol
atomic operations. Moreover, future systems that include
near memory and far memory may access near memory with
an already existing DDR protocol or in with a future DRAM
protocol that systems of the future that only have DRAM
system memory technology access DRAM system memory
with.

Specifically, in an implementation where the DRAM near
memory cache is “in front of” the far memory control logic,
and where, the far memory control logic circuitry does not
update the DRAM near memory cache on a read transaction
having a cache miss, the memory controller will drive signals
on the channel in performing steps 1001, 1002, 1003 and
provide the write data on the data bus for a write transaction
in step 1004. In this case, the memory controller may behave
much the same as existing memory controllers or memory
controllers of future systems that only have DRAM system
memory. The same may be said for the manner in which the
memory controller behaves with respect to when: 1) cache is
first read for either a read or a write transaction; and, ii) cache
is written after a cache hit for either a read or a write trans-
action.

ii. Near Memory Behind

Further still, in implementations where the DRAM near
memory cache is “behind” the far memory control logic, for
either a read or write of near memory cache, near memory
may still be accessed with a protocol that is specific to the near
memory devices. For example, the near memory devices may
be accessed with a well established (current or future) DRAM
DDR protocol. Moreover, even if the near memory devices
themselves are specifically signaled by the far memory con-
trol logic with signals that differ in some way from a well
established DRAM protocol, the memory controller may nev-
ertheless, in ultimately controlling the near memory accesses,
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apply a well established DRAM protocol on the channel 921
in communicating with the far memory control logic to effect
the near memory accesses.

Here, the far memory control logic may perform the local
equivalent (i.e., “behind” the far memory control logic rather
than on the channel) of any/all of steps 1001, 1002, 1003, or
aspects thereof, in various combinations. In addition, the
memory controller may also perform each of these steps in
various combinations with the far memory control logic
including circumstances where far memory logic circuitry is
also performing these same steps. For example, the far
memory control logic may be designed to act as a “forward-
ing” device that simply accepts signals from the channel
originally provided by the memory controller and re-drives
them to its constituent near memory platform.

Alternatively, the far memory control logic may originally
create at least some of the signals needed to perform at least
some of steps 1001, 1002, 1003 or aspects thereof while the
memory controller originally creates signals needed to per-
form others of the steps. For instance, according to one
approach, in performing a cache read, the memory controller
may initially drive the select signals on the channel in per-
forming step 1001. In response to the receipt of the select
signals 1001, the far memory control logic may simply re-
drive these signals to its constituent near memory platform,
or, may process and comprehend their meaning and enable/
disable the near memory platform (or a portion thereof)
according to a different selection signaling scheme than that
explicitly presented on the channel by the memory controller.
The select signals may also be provided directly to the near
memory platform from the channel and also routed to the far
memory control logic so the far memory control logic can at
least recognize when its constituent near memory platform
(or portion thereof) is targeted for the transaction.

In response to recognizing that at least a portion of its
constituent near memory devices are targeted for the transac-
tion, the far memory control logic may originally and locally
create any/all of the clock enable signals and/or on-die termi-
nation signals in step 1002 behind the far memory control
logic between the control logic and the near memory storage
devices. These signals may be crafted by the far memory
control logic from a clock signal or other signal provided on
the channel by the memory controller. Any clock enable sig-
nals or on-die termination signals not created by the far
memory control logic may be provided on the channel by the
memory controller and driven to the near memory platform
directly, or, re-driven by the near memory control logic.

For near memory cache read operations, the memory con-
troller may perform step 1003 by providing a suitable request
and address on the command bus of the channel. The far
memory control logic may receive the command from the
channel (and locally store its pertinent address information).
It may also re-drive or otherwise present the read command
and address to the near memory platform. With respect to step
1004, the memory controller will also receive the cache read
data. The read data may be presented on the channel’s data
bus by the far memory control logic circuitry (in re-driving
the read data provided by the near memory platform), or, the
read data may be driven on the channel’s data bus by the near
memory platform directly.

With respect to near memory channel operations that occur
after a cache read, such as a write to cache after a cache hit for
a write transaction, the far memory control logic circuitry or
the memory controller may perform any of steps 1001, 1002,
1003 in various combinations consistent with the principles
described just above. At one extreme, the far memory control
logic circuitry performs each of steps 1001, 1002 and 1003

5

10

15

20

25

30

35

40

45

55

60

65

32

independently of the memory controller. At another extreme
the memory controller performs each of steps 1001, 1002 and
1003, and, the far memory control logic circuitry re-drives all
or some of them to the near memory platform, or, receives and
comprehends and then applies its own signals to the near
memory platform in response. In between these extremes, the
far memory control logic may perform some of steps 1001,
1002, and 1003 or aspects thereof while the memory control-
ler performs others of these steps or aspects thereof.

The atomic operations described just above may be inte-
grated as appropriate with the embodiments disclosed above
in the preceding sections.

b. Far Memory Access

Recall that where near memory cache is constructed from
DRAM, for example, the timing of near memory transactions
are precisely understood in terms of the number of clock
cycles needed to perform each step of a transaction. That is,
for near memory transactions, the number of clock cycles
needed to complete a read or write request is known, and, the
number of clock cycles needed to satisfy a read or write
request is known. As such, near memory accesses may be
entirely under the control of the memory controller, or, at
least, the memory controller can precisely know the time
spent for each near memory access (e.g., for scheduling pur-
poses).

By contrast, for far memory transactions, although the
number of clock cycles needed to complete a read or write
request over the command bus may be known (because the
memory controller is communicating to the near memory
control logic circuitry), the number of clock cycles needed to
satisfy any such read or write request to the far memory
devices themselves is unknown. As will be more apparent in
the immediately following discussion, this may lead to the
use of an entirely different protocol on the channel for far
memory accesses than that used for near memory accesses.

FIG. 11 shows a more detailed view of an embodiment of
the far memory control logic circuitry 1120 and the associated
interface circuitry 1135 that directly interfaces with the far
memory devices. Here, for example, the various storage cells
of the near memory devices may have different “wear-out”
rates depending on how frequently they are accessed (more
frequently accessed cells wear out faster than less frequently
accessed cells).

In an attempt to keep the reliability of the various storage
cells approximately equal, logic circuitry 1120 and/or inter-
face circuitry 1135 may include wear-out leveling algorithm
circuitry 1136 that, at appropriate moments, moves the data
content of more frequently accessed storage cells to less
frequently accessed storage cells (and, likewise, moves the
data content of less frequently accessed storage cells to more
frequently accessed storage cells). When the far memory
control logic has a read or write command ready to issue to the
far memory platform, a wear out leveling procedure may or
may not be in operation, or, if in operation, the procedure may
have only just started or may be near completion or anywhere
in between.

These uncertainties, as well as other possible timing uncer-
tainties stemming from the underlying storage technology
(such as different access times applied to individual cells as a
function of their specific past usage rates), lead to the pres-
ence of certain architectural features. Specifically, with
respect to the near memory control logic, a far memory write
buffer 1137 exists to hold write requests to far memory, and,
a far memory read buffer 1138 exists to hold far memory read
requests. Here, the presence of the far memory read and write
buffers 1137, 1138 permits the queuing, or temporary hold-
ing, of read and write requests.



US 9,342,453 B2

33

If aread or write request is ready to issue to the far memory
devices, but, the far memory devices are not in a position to
receive any such request (e.g., because a wear leveling pro-
cedure is currently in operation), the requests are held in their
respective buffers 1137, 1138 until the far memory devices
are ready to accept and process them. Here, the read and write
requests may build up in the buffers from continued transmis-
sions of such requests from the memory controller and/or far
memory control logic (e.g., in implementations where the far
memory control logic is designed to automatically access
near memory as described above) until the far memory
devices are ready to start receiving them.

A second architectural feature is the ability of the memory
controller to interleave different portions of read and write
transactions (e.g., from the CPU) on the channel 1121 to
enhance system throughput. For example, consider a first read
transaction that endures a cache miss which forces a read
from far memory. Because the memory controller does not
know when the read request to far memory will be serviced,
rather than potentially idle the channel waiting for a response,
the memory controller is instead free to issue a request that
triggers a cache read for a next (read or write) transaction. The
process is free to continue until some hard limit is reached.

For example, the memory controller is free to initiate a
request for a next read transaction until it recognizes that
either the far memory control logic’s read buffer 1138 is full
(because a cache miss would create a need for a far memory
read request) or the far memory control logic’s write buffer is
full (because a set dirty bit on a cache miss will create a need
for a far memory write request). Similarly, the memory con-
troller is free to initiate a request for a next write transaction
until it recognizes that the far memory control logic’s write
bufferis full (because a set dirty bit on a cache miss will create
a need for a far memory write request).

In an embodiment, the memory controller maintains a
count of credits for each of the write buffer 1137 and the read
buffer 1138. Each time the write buffer 1137 or read buffer
1138 accepts a new request, its corresponding credit count is
decremented. When the credit count falls below or meets a
threshold (such as zero) for either of the buffers 1137, 1138,
the memory controller 1137, 1138 refrains from issuing on
the channel any requests for a next transaction. As described
in more detail below, the memory controller can comprehend
the correct credit count for the read buffer by: 1) decrement-
ing the read buffer credit count whenever a read request is
understood to be presented to the read buffer 1138 (either by
being sent by the memory controller over the channel directly,
or, understood to have been created and entered automatically
by the far memory control logic); and, 2) decrementing the
read buffer credit whenever a read response is presented on
the channel 1121 for the memory controller.

Moreover, again as described in more detail below, the
memory controller can comprehend the correct credit count
for the write buffer by: 1) decrementing the write buffer credit
count whenever a write request is understood to be presented
to the write buffer 1137 (e.g., by being sent by the memory
controller over the channel directly, or, understood to have
occurred automatically by the far memory control logic); and,
2) decrementing the write buffer credit whenever a write
request is serviced from the write buffer 1137. In an embodi-
ment, again as described in more detail below, the far memory
control logic 1120 informs the memory controller of the
issuance of write requests from the write buffer 1137 to the far
memory storage device platform 1131 by “piggybacking”
such information with a far memory read request response.
Here, a read of far memory is returned over the channel 1121
to the memory controller. As such, each time far memory
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control logic 1120 performs a read of far memory and com-
municates a response to the memory controller, as part of that
communication, the far memory control logic also informs
the memory controller of the number of write requests that
have issued from the write buffer 1137 since the immediately
prior far memory read response.

An additional complication is that, in an embodiment, read
requests may be serviced “out of order”. For example, accord-
ing to one design approach for the far memory control logic
circuitry, write requests in the write buffer 1137 are screened
against read requests in the read buffer 1138. If any of the
target addresses between the two buffers match, a read
request having one or more matching counterparts in the write
buffer is serviced with the new write data associated with the
most recent pending write request. If the read request is
located in any other location than the front of the read buffer
queue 1138, the servicing of the read request will have the
effect of servicing the request “out-of-order” with respect to
the order in which read requests were entered in the queue
1138. In various embodiments the far memory control logic
may also be designed to service requests “out-of-order”
because of the underlying far memory technology (which
may, at certain times, permit some address space to be avail-
able for a read but not all address space).

In order for the memory controller to understand which
read request response corresponds to which read request
transaction, in an embodiment, when the memory controller
sends a read request to the far memory control logic, the
memory controller also provides an identifier of the transac-
tion (“TX_ID”) to the near memory control logic. When the
far memory control logic finally services the request, it
includes the transaction identifier with the response.

Recall that FIG. 94 and its discussion pertained to an
embodiment of a memory channel and its use by a memory
controller for accessing near memory cache with a first (near
memory) access protocol. Notably, FIG. 9a is further
enhanced to show information that can be “snuck” onto the
channel by the memory controller as part of the first (near
memory) access protocol—but—is nevertheless used by the
far memory controller to potentially trigger a far memory
access. FIG. 95 shows the same channel and its use for access-
ing far memory cache by the memory controller with a second
(far memory) access protocol.

Because in various embodiments the tag information of a
cache line’s full address is stored along with the data of the
cache line in near memory cache (e.g., embedded tag infor-
mation 411, 711, 811), note that FIG. 9a indicates that, when
the channel is used to access near memory cache (read or
write), some portion of bits lines 942_2 that are nominally
reserved for ECC are instead used for the embedded tag
information411, 711. “Stealing” ECC lines to incorporate the
embedded tag information rather than extending the size of
the data bus permits, for example, DIMM cards manufactured
for use in a traditional computer system to be used in a system
having both near and far levels of storage. That is, for
example, if a DRAM only DIMM were installed in a channel
without any far memory (and thus does not act like a cache for
the far memory), the full width of'the ECC bits would be used
for ECC information. By contrast, ifa DIMM having DRAM
were installed in a channel with far memory (and therefore the
DRAM acts like a cache for the far memory), when the
DRAM is accessed, some portion of the ECC bits 942_2
would actually be used to store the tag bits of the address of
the associated cache line on the data bus. The embedded tag
information 411, 711, 811 is present on the ECC lines during
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step 1004 of FIG. 10 when the data of a near memory cache
line is being written into near memory or being read from near
memory.

Also recall from above that in certain embodiments the far
memory control logic may perform certain acts “automati-
cally” with the assistance of the additional information that is
“snuck” to the far memory controller on the memory channel
as part of a near memory request. These automatic acts may
include: 1) automatically detecting a cache hit or miss; 2) an
automatic read of far memory upon recognition of a cache
miss and recognition that a read transaction is at play; and, 3)
an automatic write to far memory upon recognition of a cache
miss coupled with recognition that the dirty bit is set.

As discussed in preceding sections, in order to perform 1),
2) and 3) above, the cache hit or miss is detected by sneaking
the transaction’s tag information 405, 705, 805 to the far
memory control logic as part of the request that triggers the
near memory cache access, and, comparing it to the embed-
ded tag information 411, 711, 811 that is stored with the cache
line and that is read from near memory.

In an embodiment, referring to FIG. 94 and FIG. 10 the
transaction’s tag information 405, 705, 805 is snuck to the far
memory control logic over the command bus in step 1003
(command phase) in locations that would otherwise be repro-
duced as unused column and/or row bits on the near memory
address bus (e.g., more so column than row). The snarf of the
embedded tag information 411, 711, 811 by the far memory
control logic can be made in step 1004 of FIG. 10 when the
cache line is read from near memory by snarfing the “stolen
ECC bits” as described above). The two tags can then be
compared.

Moreover, in order to perform 2) or 3) above, the far
memory control logic should be able to detect the type of
transaction at play (read or write). In the case where near
memory is in front of the far memory control logic, again
referring to FIG. 94 and FIG. 10, the type of transaction at
play can also be snuck to the far memory control logic over
the command bus in a manner like that described for 1) just
above for a transaction’s tag information (e.g., on the com-
mand bus during command phase 1003). In the case where the
near memory is behind the far memory control logic, it is
possible for the far memory control logic to detect whether
the overall transaction is a read or write simply by keying off
of the transaction’s original request from the memory con-
troller (e.g., compare FIGS. 86 and 84). Otherwise the same
operation as for the near memory in front approach can be
effected.

Additionally, in order to perform 3) above, referring to
FIG. 9a and FIG. 10, the far memory control logic should be
able to detect whether the dirty bit is set. Here, since the dirty
bit is information that is embedded with the data of a cache
line in near memory, another ECC bitis “stolen” as described
just above with respect to the embedded tag information 411,
711, 811. As such, the memory controller writes the dirty bit
by presenting the appropriate value in one of the ECC bit
locations 942_2 of the channel during step 1004 of a near
memory write access. Similarly, the far memory control logic
can detect the dirty bit by snarfing this same ECC location
during a near memory read access.

Referring to FIG. 95 and FIG. 10, in order to address
“out-of-order” issues, a transaction identifier can be sent to
the far memory control logic circuit as part of a far memory
read request. This can also be accomplished by presenting the
transaction identifier on the command bus during the com-
mand phase 1003 of the far memory read request.

FIG. 124 shows an atomic process for a read access of far
memory made over the channel by the memory controller.
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The process of FIG. 124 may be accomplished, for instance,
in cases where the far memory control logic does not auto-
matically perform a read into far memory upon detection of a
cache miss for a read transaction and needs to be explicitly
requested by the memory controller to perform the far
memory read. Moreover, recall that in embodiments
described above, the memory controller can issue a read
request to the far memory control logic in the case of a cache
miss even if the far memory control logic automatically ini-
tiates the far memory read (see, e.g., FIGS. 75 and 85).

Referring to FIGS. 95, 11 and 12a, a read request having a
far memory read address is issued 1201 by the memory con-
troller over the command bus 941. The read request issued
over the command bus also includes a transaction identifier
that is kept (e.g., in a register) by the far memory control logic
1120.

The request is placed 1202 in a read buffer 1138. Write
requests held in a write bufter 1137 are analyzed to see if any
have a matching target address 1203. If any do, the data for the
read request response is taken from the most recently created
write request 1204. If none do, eventually, the read request is
serviced from the read buffer 1138, read data is read from the
far memory platform 1131, and ECC information for the read
data is calculated and compared with the ECC information
stored with the read data 1205. If the ECC check fails an error
is raised by the far memory control logic 1206. Here, referring
to FIG. 95, the error may be signaled over one of the select
943_1, clock enable 943_2 or ODT 943_3 lines.

Ifthe read response was taken from the write buffer 1137 or
the ECC check was clean, the far memory control logic 1120
informs the memory controller that it has a read response
ready for transmission 1207. In an embodiment, as observed
in FIG. 95, this indication 990 is made over one of a select
signal line 943_1, clock enable signal line 943_2 or an on-die
termination line 943_3 of the channel that is usurped for this
purpose. When the memory controller (which in various
embodiments has a scheduler to schedule transactions on the
channel), decides it can receive the read response, it sends an
indication 991 to the far memory control logic that it should
begin to send the read response 1208. In an embodiment, as
observed in FIG. 954, this indication 991 is also made over one
of a select line 943_1, clock enable signal line 943_2 or an
on-die termination line 943_3 of the channel that is usurped
for this purpose.

The far memory control logic 1120 then determines how
many write requests have issued from the write buffer 1137
since the last read response was sent (“write buffer issue
count”). The read data is then returned over the channel along
with the transaction identifier and the write buffer issue count
1209. In an embodiment, since the ECC calculation was made
by the far memory control logic, the data bus lines that are
nominally used for ECC are essentially “free”. As such, as
observed in FIG. 954, the transaction identifier 992 and write
buffer issue count 993 are sent along the ECC lines 942_2 of
the channel from the far memory controller to the memory
controller. Here, the write buffer issue count 993 is used by
the memory controller to calculate a new credit count so as to
permit the sending of new write requests to the far memory
control logic 1210. The memory controller can self regulate
its sending of read requests by keeping track of the number of
read requests that have been entered into the read buffer 1138
and the number of read responses that have been returned.

FIG. 125 shows a basic atomic process for a write access of
far memory over the channel by the memory controller. The
process of FIG. 125 may be accomplished, for instance, in
cases where the far memory control logic does not automati-
cally perform a write into far memory (e.g., on a cache miss
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with the dirty bit for either a read transaction or a write
transaction) and needs to be explicitly requested by the
memory controller to do so. The write process of FIG. 126
may also be utilized in channels that do not have any resident
near memory (e.g., a PCMS only channel). According to the
process of FIG. 125 the memory controller receives a write
transaction 1221. The memory controller checks its write
buffer credit count to see if enough credits exist to send a write
request 1222. If so, the memory controller sends a write
request 1223 to the far memory control logic over the com-
mand bus. In response, the far memory control logic places
the request in its write buffer 1224. Eventually, the write
request is serviced from the write bufter, ECC information is
calculated for the data to be written into far memory and
stored along with the data into far memory 1224.

Enhanced write process were discussed previously with
respect to FIG. 7d (near memory in front) and FIG. 84 (near
memory behind). Here, the operation of the far memory con-
trol logic and embodiments of specific components of the
channel for effecting these write processes have already been
discussed above. Notably, however, in addition, with respect
to the enhanced write process of FIG. 7d, the memory con-
troller can determine from the cache read information
whether a write to far memory is needed in the case of a cache
miss and the dirty bit is set. In response, the memory control-
ler can increment its write buffer count as it understands the
far memory control logic will automatically perform the write
into far memory but will also automatically enter a request
into the write buffer 1224 in order to do so. With respect to the
enhanced write process of FIG. 84, the memory controller can
also receive the cache read information and operate as
described just above.

Of course, the far memory atomic operations described
above can be utilized, as appropriate, over a channel that has
only far memory technology (e.g., a DDR channel only hav-
ing DIMMs plugged into whose storage technology is only
PCMS based).

The far memory control logic as described above can be
implemented on one or more semiconductor chips. Likewise
the logic circuitry for the memory controller can be imple-
mented on one or more semiconductor chips.

Although much of the above discussion was directed to
near memory system memory and far memory system
memory devices that were located external to the CPU die and
CPU package (e.g., on DIMM cards that plug into a channel
that emanates from the CPU package), architecturally, the
above embodiments and processes could nevertheless also be
implemented within a same CPU package (e.g., where a
channel is implemented with conductive traces on a substrate
that DRAM and PCMS devices are mounted to along with the
CPU die in a same CPU package (far memory control logic
could be designed into the CPU die or another die mounted to
the substrate) or even on the CPU die itself (e.g., where,
besides logic circuitry to, e.g., implement the CPU and
memory controller, the CPU die also has integrated thereon
DRAM system memory and PCMS system memory, and, the
“channel” is implemented with (e.g., multi-level) on-die
interconnect wiring).

Training

Training is an embedded configuration scheme by which
communicatively coupled semiconductor devices can “figure
out” what the appropriate signaling characteristics between
them should be. In the case where only DRAM devices are
coupled to a same memory channel, the memory controller is
trained to the read data provided by each rank of DRAM. The
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memory controller is also trained to provide properly timed
write data to each rank. Training occurs on an 8 bit basis for
x8 DRAMSs and on a 4 bit basis for x4 DRAMs. Differences
in trace lengths between 4 or 8 bit groups require this training
resolution (within the 4 or 8 bit group, the traces are required
to be matched). The host should do the adjustments because
the DRAMSs no not have adjustment capability. This saves
both cost and power on the DRAMs.

When snarfing is to be done because PCMS and DRAM are
coupled to a same channel, the far memory controller must be
trained also. For reads from near memory, the far memory
controller must be trained to accept the read data. If read data
is to be snarfed by the DRAMs from the far memory control-
ler, the far memory controller must be trained to properly time
data to the DRAMs (which are not adjustable), followed by
the host being trained to receive the resulting data. In the case
of'the far memory controller snarfing write data, a similar two
step procedure would be used.

What is claimed is:

1. A method performed by logic circuitry disposed on a
card having a connector to plug into a memory channel that
supports near memory cache accesses and far memory
accesses, comprising:

receiving from said memory channel a first tag component

of a target address of a read request transaction being
processed by a host that is coupled to said memory
channel;

receiving a second tag component of an address of a cache

line read from a near memory cache in response to said
read request transaction; and,

comparing said first and second tag components to deter-

mine if said cache line corresponds to a cache hit or a
cache miss.

2. The method of claim 1 further comprising

performing at least one of the following in response to

detecting that a cache miss has occurred:

automatically reading a desired cache line from far

memory;

detecting that a dirty bit of said cache line read from near

memory is set and automatically writing said cache line
read from said near memory into far memory.

3. The method of claim 1 wherein after said reading of said
desired cache line from far memory said logic circuitry fur-
ther performs an ECC calculation on data of said desired
cache line.

4. The method of claim 1 wherein said near memory cache
is implemented with DRAM technology and said far memory
is implemented with PCM technology.

5. The method of claim 1 wherein said near memory cache
resides on said card.

6. The method of claim 1 further comprising

performing the following in response to detecting that a

cache miss has occurred:

receiving from said host an identifier of said read request

transaction and presenting said identifier of said read
request transaction on said channel as part of a commu-
nication on said channel that transports data of said
cache line read from far memory to said host.

7. The method of claim 1 wherein said first tag component
is received with a first read request presented on said channel
by said host according to a first channel protocol used for
accessing said near memory.

8. The method of claim 7 wherein said second tag compo-
nent is received with a second read request presented on said
channel by said host according to a second channel protocol
used for accessing said far memory.
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9. A semiconductor chip, comprising:

an interface to a memory channel;

a read buffer to hold a far memory read request received

from said memory channel;

logic circuitry to detect a cache miss of a cache line read

from a near memory in response to a near memory read
request issued on said memory channel, said near
memory a cache for said far memory, said logic circuitry
to additionally perform at least one of the following in
response thereto:

initiate a read of a desired cache line from said far memory,

said desired cache line containing data sought by a trans-
action that caused said near memory read request to be
issued on said memory channel;

detect that a dirty bit of said cache line read from near

memory is set and automatically writing said cache line
read from said near memory into far memory.

10. The semiconductor chip of claim 9 wherein said logic
circuitry receives from said first interface both tag informa-
tion of an address of said cache line read from near memory
and tag information of said transaction’s address.

11. The semiconductor chip of claim 9 wherein said logic
circuitry includes a second interface distinct from said first
interface to couple to said far memory, and wherein said
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semiconductor chip to receive through said first interface tag
information of said transaction’s address.

12. The semiconductor chip of claim 9 further comprising
ECC logic to calculate ECC information for said cache line
read from said near memory and/or said cache line written
into said far memory.

13. The semiconductor chip of claim 9 further comprising
first register space to store a first tag component of said
transaction’s address, and, second register space to store a
second tag component of an address of said cache line read
from said near memory, said second tag component embed-
ded with said cache line read from said near memory.

14. The semiconductor chip of claim 9 wherein said near
memory is implemented with DRAM and said far memory
component is implemented with PCM.

15. The semiconductor chip of claim 14 wherein said semi-
conductor chip further comprises wear out leveling algorithm
logic circuitry for said PCM far memory.

16. The semiconductor chip of claim 14 wherein said semi-
conductor chip further comprises a write request buffer to
hold write requests to said far memory, and, a read request
buffer to hold read requests to said far memory.
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